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This paper develops a nonlinear spatial autoregressive model. Of particular interest is a structural
interaction model for share data. We consider possible instrumental variable (IV) and maximum
likelihood estimation (MLE) for this model, and analyze asymptotic properties of the IV andMLE based on
the notion of spatial near-epoch dependence. We also design a statistical test to compare the nonlinear
transformation against alternatives. Monte Carlo experiments are designed to investigate finite sample
performance of the proposed estimates and the sizes and powers of the test.
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1. Introduction

The linear spatial autoregressive (SAR) model Yn = λWnYn +

Xnβ + ϵn has been widely studied. Many of the early studies of the
model have been summarized in Anselin (1988), Anselin and Bera
(1998) and LeSage and Pace (2009). Kelejian and Prucha (1999)
and Lee (2007) study the generalized method of moments (GMM)
applied to the SARmodel. Lee (2004) studies asymptotic properties
of the quasi-maximum likelihood estimator of the SAR model.

To obtain asymptotic properties of estimators in nonlinear spa-
tialmodels, laws of large numbers (LLN) and central limit theorems
(CLT) are necessary. Jenish and Prucha (2009) establish the CLT,
the uniform and pointwise LLN for spatial mixing processes. Jenish
and Prucha (2012) study asymptotic properties of near-epoch de-
pendent (NED) random fields. Subsequently, Jenish (2012) consid-
ers the estimation of a nonparametric regression function of NED
processes. Even though the previously mentioned studies provide
general asymptotic theories of large samples, we found that there
are few studies for specific parametric nonlinear spatial models. In
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this paper,we explore the usefulness of the spatial NED theories for
the estimation of a nonlinear SAR model that involves a nonlinear
transformation.

Some types of spatial models are designed to deal with share
data or positive data. In this study, ‘‘share data’’ refers to samples
with observed dependent variableswhose values are between zero
and one. In this paper, we study share data with values in the open
interval (0, 1). An earlier example is in Lin and Lee (2010), which
studies a model of share data pertaining to county teenage preg-
nancy rates. However, they adopted the conventional linear SAR
model for their study. As a county’s teenage pregnancy rate must
be between zero and one, a linear model at best could only ap-
proximate the true model. This paper proposes a nonlinear model
with interactions, which takes into account the limited range of the
share variable. More specifically, because share data take values in
(0, 1), we formulate themodel as si,n = F(λ0wi·,nSn+xi,nβ0+ϵi,n),
where F(·) is a strictly increasing cumulative probability function
on the real line R, and si,n represents the share variable of unit i
while the sample size is n. While the interest of this model is mo-
tivated by share variables, we consider a more general setting of
such a model with F(·) being a smooth monotonic function and
not necessarily a distribution function so that the setting can be
also used to study other types of variables, such as positive depen-
dent variables.

http://dx.doi.org/10.1016/j.jeconom.2014.12.005
http://www.elsevier.com/locate/jeconom
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This paper suggests estimationmethods, namely, themaximum
likelihood (ML) method and the two-stage least squares (2SLS)
estimation, for the unknown parameters λ0 and β0 while main-
taining the setting that F(·) is a known function. We first show
that the outcome si,n generated from this model is a spatial NED
random field. Then, we provide asymptotic analysis for parameter
estimates of this nonlinear spatial model based on the newly de-
veloped LLN and CLT in Jenish and Prucha (2012) for spatial NED
random fields. Our analysis goes beyond that of the popular SAR
model in the spatial literature.

This paper is organized as follows. We introduce the nonlinear
SAR model and derive the spatial NED property of the dependent
variable generated by thismodel in Section 2.We consider the esti-
mation of this model by the ML method and prove the consistency
and asymptotic normality of theMLE in Section 3. In addition to the
ML approach, Section 4 considers the IV estimation,which includes
the 2SLS approach, and a procedure to test a nonlinear functional
form against some alternatives based on 2SLS estimation. Finally,
Monte Carlo experiments are conducted in Section 5 to investigate
the finite sample performance of the estimates and sizes and pow-
ers of the test. All proofs for propositions and theorems are col-
lected in Appendices.1

2. The model and near-epoch dependence

As described in the introduction, we consider the model

si,n = F(λ0wi·,nSn + xi,nβ0 + ϵi,n), (1)

for i = 1, . . . , n, where F(·) is a strictly increasing and continu-
ous function on the real line R and xi,n = (xi1,n, . . . , xiK ,n) ∈ RK

is the vector of exogenous variables. In this paper, we consider a
parametric model in which the functional form of F is known and
does not involve any unknown parameters. For example, F(·) can
be the distribution function of the standard normal distribution
Φ(·), the logistic distribution, F(x) = 1/(1 + e−x), or the function
F(x) = (x +

√
x2 + 4)/2 with range (0, ∞). Sn = (s1,n, . . . , sn,n)′

is the n-dimensional column vector of outcomes.
This model covers and goes beyond linear spatial interaction

models. Thus it can possibly enable broader application of spatial
and network interaction models. Here are some possible applica-
tions: (1) Share data and percentage data that satisfy si,n ∈ (0, 1).
An example is violent crime rates for all US states in a year. Another
example is the test pass rates of different schools or school districts,
e.g., in Papke and Wooldridge (2008). (2) Many data in economics,
such as the GDP of different regions and stock prices belonging to
the same industry, are strictly positive and might be spatially cor-
related. One way to model such data is to choose a strictly increas-
ing and positive F(·). In this paper,we shall consider the estimation
of the model (1) by the methods of ML and IV estimation.

Theremay be some possible concerns about ourmodel and esti-
mation methods.2 (1) In data sets with a non-negative dependent
variable and a significant numbers of observations taking on the
value 0, the above model is not suitable, and we should consider
using a Tobit model instead (see Xu and Lee, 2014). (2) The strictly
increasing assumption of F(·)might be too strong. For this concern,
however, we note that, in many economics studies, one may pre-
fer that the marginal effects of exogenous variables maintain the
same signs and having a monotonic property. In those situations,
the strictly increasing assumption of F(·) is preferred. The strictly
monotonic assumption is widely used in the transformationmodel

1 A supplement file which provides additional analysis and results are also
available upon request (see Appendix C).
2 We appreciate having these comments from referees.
literature (see, e.g. Horowitz, 1996; Chen, 2002). (3) Since F(·) is
strictly increasing, its inverse exists and thus the model can be
written as F−1(si,n) = λ0wi·,nSn + xi,nβ0 + ϵi,n and IV estimation
can be applied to estimate the model. This assertion is correct and
we will discuss the IV and 2SLS estimations in Section 4. However,
properties such as consistency and the asymptotic distribution of
an IV estimator do not follow from existing literature on typical IV
estimation with cross section or time series data. Also, they do not
follow from existing IV estimation for the linear SAR model. Thus,
rigorous study of those properties of an IV estimator still needs to
be conducted. We also study the MLE as it can be more efficient
than IV estimators. (4) It might be a strong assumption that the
functional form is known. Without a known function for F(·), the
modelwill be a semi-parametric one.Wewill explore such amodel
in future research. This paper will focus on a parametric model, as
such a study can be a good starting point to understand the prop-
erties of popular estimation methods.

As Sn is endogenous, Eq. (1) is a well-defined model if the sys-
tem determines a unique vector Sn of outcomes given ϵn and Xn,
where Xn is an n × K matrix of exogenous variables xi,n’s and ϵn
is the vector of disturbances. This is possible if there are proper
restrictions on the interaction effect λ and the spatial weights ma-
trixWn, whose ith row iswi·,n. The implied system of the specified
equations in (1) for all n units is

Sn =


F(λw1·,nSn + x1,nβ + ϵ1,n)
F(λw2·,nSn + x2,nβ + ϵ2,n)

...
F(λwn·,nSn + xn,nβ + ϵn,n)

 . (2)

Before further discussion, we list some of our formal assump-
tions. The first set of assumptions concerns the geographical set-
ting of spatial units:

Assumption 1. Individual units in an economy are located or liv-
ing in a region Dn ⊂ D ⊂ Rd, where limn→∞ |Dn| = ∞ and Rd

is the finite dimensional Euclidean space of dimension d. The dis-
tance between every two individuals is larger than or equal to a
specific positive constant, say, 1.

The distance, as referred to in Assumption 1, can be defined
from the norm ∥(x1, . . . , xd)∥∞ ≡ maxi |xi| or other norms. The
above assumption is similar to that in Jenish and Prucha (2012). It
means, in a bounded space, there are at most a finite number of
units even if the population is infinite.

Assumption 2. Only individuals whose distances are less than or
equal to some specific constantmay affect each other.Without loss
of generality, we set it as d0, which is greater than 1.3

The elements of the spatial weights matrix are defined in terms
of the strength of neighbors’ direct interactions with each other.
Under Assumptions 1 and 2, it follows immediately that in every
row i and column j in Wn, the total number of non-zero elements
is less than or equal to some finite constant uniformly in i, j and n.

For the spatial weights matrix Wn, as n tends to infinity, we
have a sequence of square matrices {Wn} increasing in dimen-
sion. It is valuable to summarize some of the regularity for {Wn} in
terms of relevant matrix norms. As shown in Kelejian and Prucha
(2001), the matrix norms ∥.∥∞ and ∥.∥1 induced, respectively, by
the vector norms ∥.∥∞ and ∥.∥1 are of particular interest. Explic-
itly, ∥Wn∥1 = maxj=1,...,n

n
i=1 |wij,n| is known as the column sum

norm, and ∥Wn∥∞ = maxi=1,...,n
n

j=1 |wij,n| is the row sum norm.

3 This allows individuals to have interactions with others, as individuals live at
least one unit of distance apart in Assumption 2.
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In the linear SAR model, it is required that supλ,n ∥λWn∥∞ < 1. In
our paper, we have a similar assumption. As F(x) is strictly increas-
ing, its derivative exists almost everywhere. The next assumption
concerns the derivative function F ′ of F .

Assumption 3. The function f (x) = F ′(x) > 0 for all x ∈ R, and
the following condition holds: ζ ≡ λmbf supn ∥Wn∥∞ < 1, where
bf = supx f (x), λm = supλ∈Λ |λ|withΛ being the compact param-
eter space of λ on the real line.

Assumption3 implies that elements inWn for alln are uniformly
bounded. Because the number of nonzero elements in each column
is uniformly bounded, {Wn} is uniformly bounded in both row and
column sum norms. In many studies on linear SAR models in the
spatial econometric literature, the uniform boundedness in both
row and column sumnorms forWn is a stated assumption. In those
cases, the uniform boundedness of elements of Wn is an implied
necessary condition. The uniform boundedness of Wn in both row
and column sumnorms for a linear SARmodel is important in order
tomake the SAR system stable as n tends to infinity. Assumption 2,
on the geographical setting, is a stronger than usual assumption
for a linear SAR model. However, in many empirical applications,
such a specification is used. We find it to be analytically tractable
and simpler to adopt this assumption for our asymptotic analysis
of estimators for the nonlinear SAR model (1).

As ζ is assumed to be finite, Assumption 3 has implicitly as-
sumed that f (x) is bounded. The logistic, normal, extreme value,
Laplace and t distributions satisfy this assumption. The function
F(x) =

1
2 (x+

√
x2 + 4) also satisfies this assumption. This assump-

tion is useful to establish the NED property of Sn that will be dis-
cussed later. If Wn is row normalized, then ∥Wn∥∞ = 1 and ζ =

λmbf ; hence, the condition in Assumption 3 for B will be satisfied if
λmbf < 1. This condition will, in turn, restrict what the parameter
space Λ of λ can be. For example, if F is the standard normal dis-
tribution, f will be the standard normal density and bf = 1/

√
2π .

ForWn being row-normalized,Λ can be taken as a compact subset
of (−

√
2π,

√
2π). If F(x) = 1/(1 + e−x) is the logit distribution,

then bf = 0.25. For the logit transformation, the possible range of
parameter values of λ will be a compact subset of (−4, 4) when
Wn is row-normalized. Under Assumption 3, the right hand side of
Eq. (2) is a contraction mapping with respect to Sn, so Eq. (2) will
surely have a unique solution as in the following proposition:

Proposition 1. Under Assumption 3, there is exactly one solution Sn
for Eq. (2).

When Assumption 3 fails to hold, it is possible that Eq. (2) has
multiple solutions and we do not study such cases in this paper.
For example, when F(x) = exp(x), the system ln si,n

...
ln sn,n

 =

λw1·,nSn + x1,nβ + ϵ1,n
...

λwn·,nSn + xn,nβ + ϵn,n

 (3)

might have several solutions. As a specific case, the system (ln s1,
ln s2) = (0.1s2, 0.1s1) has two solutions: (s1, s2) = (1.1183,
1.1183) and (35.7715, 35.7715).

Since our model is a nonlinear one with spatial correlation, in
order to show the large sample properties of an estimator, we ex-
plore a type of weak dependence on the sample observations gen-
erated by the model. We consider NED random fields in this pa-
per due to the intrinsic spatial autoregressive feature of themodel.
As in Jenish and Prucha (2012), for any random vector Y , ∥Y∥p ≡

[E|Y |
p
]
1/p, where |Y | is the Euclidean norm of Y . Dn ⊂ D is a finite

set and |Dn| is its cardinality.
Definition 1 (NED). Let Z = {Zi,n, i ∈ Dn, n ≥ 1} be a random field
with ∥Zi,n∥p < ∞, p > 1, let ϵ = {ϵi,n, i ∈ Dn, n > 1} be a random
field,where |Dn| → ∞ as n → ∞, and let d = {di,n, i ∈ Dn, n > 1}
be an array of finite positive constants. Then the random field Z
is said to be Lp-near-epoch dependent on the random field ϵ if
∥Zi,n−E(Zi,n|Fi,n(s))∥p 6 di,nψ(s) for some functionψ(s) > 0with
lims→∞ ψ(s) = 0, where σ -field Fi,n(s) = σ({ϵj,n : d(j, i) 6 s}).
The ψ(s), which is, without loss of generality, assumed to be non-
increasing, is called the NED coefficient, and the di,n’s are called
NED scaling factors. Z is said to be Lp-NED on ϵ of size−λ ifψ(s) =

O(s−µ) for someµ > λ > 0. Furthermore, if supn supi∈Dn di,n < ∞,
then Z is said to be uniformly Lp-NED on ϵ. Ifψ(s) = O(ρs), where
0 < ρ < 1, then Z is called geometrically Lp-NED on ϵ.

The term of geometrically Lp-NED random fields can be found,
for example, in Hill (2010). Obviously, geometrically Lp-NED ran-
dom fields are also Lp-NED of size −λ for any λ > 0.

Another assumption is needed regarding the disturbances in
Eq. (1).

Assumption 4. For each n, ϵi,n’s are i.i.d. (0, σ 2
0 ) double arrays.

The regressors xi,n’s may be treated as deterministic or random
variables. For generality, they are treated as random variables with
spatial correlation. For the following propositions on NED, the
explicit spatial structure on xi,n’s is unnecessary, but it will be
needed later on.

Lemma 1. Under Assumptions 3 and 4, if supn E|ϵi,n|p < ∞ and
supi,k,n ∥xik,n∥p < ∞ for some 0 < p ∈ Z, then si,n is uniformly Lp
bounded, i.e., supi,n E|si,n|p < ∞.

Proposition 2. Under Assumptions 1–4, if supi,k,n ∥xik,n∥2 < ∞,
then ∥si,n−E(si,n|Fi,n(md0))∥2 6 bf (σ0+∥β0∥1 supi,n ∥xik,n∥2)ζ

m+1

/(1− ζ ), where Fi,n(s) ≡ σ({ϵj,n, xj,n : d(j, i) 6 s}), i.e., {si,n}ni=1 is
a geometrically L2-NED random field on {ϵi,n, xi,n}ni=1 uniformly in i
and n.

Proposition 1 in Jenish and Prucha (2012) discusses the condi-
tions underwhich a nonlinear system is L2-NED andwe apply their
conclusion to obtain the above proposition for our system. Propo-
sition 2 has a useful corollary.

Corollary 1. Under Assumptions 1–4, if supi,k,n ∥xik,n∥2 < ∞, then
{wi.,nSn}ni=1 is uniformly and geometrically L2-NED: ∥wi.,nSn −

E(wi.,nSn|Fi,n(md0))∥2 6 σ0ζ
m+1/[λmbf (1 − ζ )]; if, in addition,

supn E|ϵi,n|p < ∞ and supi,k,n ∥xik,n∥p < ∞ for some 0 < p ∈ Z,
then {wi.,nSn}ni=1 is uniformly Lp bounded in i and n.

Another interesting variable is ti,n := F−1(si,n), which is a trans-
formed dependent variable. Themodel (1) has the following equiv-
alent representation: ti,n = λ0wi.,nSn + xi,nβ0 + ϵi,n. Corollary 1
implies immediately that {ti,n} is a geometrically L2-NED random
field on {ϵi,n, xi,n}ni=1 uniformly in i and n.

3. The MLE and its large sample properties

In this section, we would like to consider the MLE method for
the model (1). For the MLE approach, Assumption 4 needs to be
strengthened such that ϵi,n’s are normally distributed and we re-
quire that {xi,n}ni=1 is an α-mixing random field with α-mixing
coefficient α(u, v, r) 6 (u + v)τ α̂(r) for some τ > 0 and
limr→∞ α̂(r) = 0. The definition and some discussion of α-mixing
random fields can be found in Jenish and Prucha (2009, 2012).

Assumption 5. f (x) = F ′(x) is a bounded Lipschitz function.
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Assumption 6. ϵi,n’s are i.i.d.N(0, σ 2) double arrays; Xn and ϵn are
independent.

Assumption 7. (i) {xi,n}ni=1 is an α-mixing random field with α-
mixing coefficient α(u, v, r) 6 (u+v)τ α̂(r) for some τ > 0, where
α̂(r) satisfies


∞

r=1 r
d−1α̂(r) < ∞. (ii) supi,k,n ∥xik,n∥5 < ∞.4

Assumption 8. The parameter space Θ of θ = (λ, β ′, σ 2)′ is a
compact subset of RK+2.

Recall fDn = diag{f (t1,n), . . . , f (tn,n)} is the diagonal matrix
with f (t1,n), . . . , f (tn,n) as its diagonal elements. Then, under
normal disturbances, the conditional log-likelihood function of Sn
from (1) is

ln Ln(θ) = −
n
2
ln(2πσ 2)−

1
2σ 2

[F−1(Sn)− λWnSn − Xnβ]
′

× [F−1(Sn)− λWnSn − Xnβ] + ln |f −1
Dn

− λWn|. (4)

Define Qn(θ) ≡ E[ln Ln(θ)]. Now we will discuss identification.
We shall present some sufficient conditions for identification with
a finite sample. As the sample size tends to infinity, we assume that
the identification remains valid.5

The following lemmas provide some regularity conditions in or-
der to show that, when the sample size is finite, the true parameter
vector can be identified as the unique maximizer of Qn(θ).

Lemma 2. Under Assumptions 3 and 6, when Wn ≠ 0, Xn has
full column rank, the characteristic values of fDnWn are all real, and
limx→+∞ F(x)/x = 0, then Qn(θ) is uniquely maximized at θ0.

The characteristic values of fDnWn are all real when Wn is sym-
metric. It holds also for Ord’s case where Wn is constructed from
row-normalization of a symmetric spatialmatrix (Ord, 1975). To il-
lustrate this point, supposeWn = RnW ∗

n whereW ∗
n is a symmetric

matrix and Rn is a diagonal matrix with a strictly positive diagonal.
As fDnRn is positive definite, it has a decomposition fDnRn = BnB′

n
whereBn is invertible. Hence, fDnWn = BnB′

nW
∗
n = Bn(B′

nW
∗
n Bn)B−1

n .
As B′

nW
∗
n Bn is symmetric, there exists an orthonormal matrix Qn

and real eigenvalue matrix Λn such that B′
nW

∗
n Bn = QnΛnQ ′

n. In
consequence, fDnWn = BnQnΛnQ ′

nB
−1
n = PnΛnP−1

n , where Pn =

BnQn, is diagonalizable and Λn is the diagonal matrix of eigenval-
ues of fDnWn.

There are also other sufficient conditions that guarantee iden-
tification. The following is one of them:

Lemma 3. Under Assumptions 3 and 7, if W ′
nWn is not a diagonal

matrix, elements of W ′
nWn are not all the same, wii.n = 0 for all i,

Xn has full column rank, f (·) is differentiable, and there is at least an
x ∈ R ∪ {+∞,−∞} such that f ′(x) = 0while f (x) ≠ 0, then Qn(θ)

is uniquely maximized at θ0.

4 Here, we consider the L5 norm because in Lemma 1 the order of moments is an
integer and in the proof, we require the order of moments to be greater than four.
5 It was pointed out in Wooldridge (1994, p. 2653–2654) that, for M-estimation,

‘‘Verifying that θ0 is the unique minimizer of q̄ in either the stationary or
heterogeneous case often requires knowing something about the distribution of
conditioning variables, and so identification is often taken on faith unless there
are reasons to believe it might fail. Newey and McFadden (Section 2.2) give three
examples of how to verify identification in examples with identically distributed
data’’. The q̄ inWooldridge (1994) is limn→∞ n−1Qn(θ) in this paper. Hence, even in
simpler models with dependence and heterogeneity, it is usually hard to establish
the identification in the limiting sense.
All of the technical conditions in Lemma 3 are easy to satisfy,
and this lemma includes the linear case: F(x) = x. If F(·) is a dis-
tribution function, then f (·) is its density function. The condition
f ′(x) = 0 will be satisfied if f (.) has some modes. The sufficient
condition f ′(x) = 0 rules out a strictly convex or concave F(x) if
we only consider x ∈ R. The strictly increasing and strictly convex
function F = (x +

√
x2 + 4)/2, which is considered in the Monte

Carlo simulation, does not satisfy the condition f ′(x) = 0 for some
x ∈ R, but we have limx→∞ f ′(x) = 0. The preceding sufficient
conditions guarantee theQn(θ) is uniquelymaximized at θ0 via the
information inequality. In the limit as n tends to infinity, we as-
sume the identification in terms of limiting information inequality
remains valid.

Assumption 9. lim infn→∞
1
n [Qn(θ0)− Qn(θ)] > 0 for any θ ≠ θ0.

Having the identification, we still need to show the uniform
convergence: 1

n supθ∈Θ | ln Ln(θ)− Qn(θ)|
p
−→ 0 and the equiconti-

nuity of 1
nQn(θ) in order to establish the consistency of the MLE.

In proving the uniform convergence of the log-likelihood func-
tion, one of the key points is to show the uniform convergence of
the component [ln |In − λfDnWn| − E ln |In − λfDnWn|]/n, whose
form is not similar to the usual form of LLN. To show its uni-
form convergence, the formula of the Taylor series of ln |In − λWn|

in Qu and Lee (2013) is useful. For ∥λfDnWn∥∞ 6 ζ , i.e., |λ| 6 ζ/

∥fDnWn∥∞, whichholds underAssumption3, liml→∞ ∥(λfDnWn)
l
∥∞

6 liml→∞ ∥λfDnWn∥
l
∞

6 liml→∞ ζ
l
= 0. Because any two norms

on a finite dimensional linear space are equivalent (Theorem 4,
p. 260 Royden and Fitzpatrick, 2010) and the convergence for all
elements in a sequence of matrices with the same dimension is
equivalent to the convergence in matrix norm (Theorem 18.2.20,
p. 431 Harville, 1997), liml→∞(λfDnWn)

l
= 0. Then by Theorem

18.2.16 (p. 429 Harville, 1997), (In −λfDnWn)
−1

=


∞

l=0 λ
l(fDnWn)

l

for |λ| 6 ζ/∥fDnWn∥∞. Thus, by Theorem 21(ii) in Amemiya (1985,
p. 461), d ln |In − λfDnWn|/dλ = −tr[(In − λfDnWn)

−1fDnWn] =

−


∞

l=0 λ
ltr((fDnWn)

l+1).
Whenλ = 0, ln |In−λfDnWn| = 0.Whenλ ∈ (0, ζ /∥fDnWn∥∞],

because L
l=0

λltr((fDnWn)
l+1)

 =

 L
l=0

n
i=1

λl((fDnWn)
l+1)ii


6 n∥fDnWn∥∞

∞
l=0

ζ l
=

n∥fDnWn∥∞

1 − ζ
, (5)

the dominated convergence theorem is applicable:

ln |In − λfDnWn| =

 λ

0

d ln |In − vfDnWn|

dv
dv

= −

 λ

0

∞
l=0

vltr((fDnWn)
l+1)dv

= −

∞
l=0

 λ

0
vltr((fDnWn)

l+1)dv

= −

∞
l=1

λl

l
tr((fDnWn)

l)

= −

∞
l=1

λl

l

n
i=1

((fDnWn)
l)ii. (6)

Similarly, when λ ∈ [−ζ/∥fDnWn∥∞, 0), the series expansion also
holds. Hence,
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1
n
(ln |In − λfDnWn| − E ln |In − λfDnWn|)

= −
1
n

∞
l=1

λl

l

n
i=1


j1


j2

· · ·


jl−1

wij1,nwj1j2,n · · ·

×wjl−1 i,n(fifj1 · · · fjl−1 − Efifj1 · · · fjl−1). (7)

The next proposition is about the NED property of fifj1 · · · fjl−1
and the uniform convergence:

Proposition 3. (i) Let fi be the ith diagonal element of the diagonal
matrix fDn . Under Assumptions 1–5, for every positive integer l and
every point i, pick an arbitrary chain fi, fi1 , fi2 , . . . , fil such that
d(i, i1) 6 d0 and d(ip, ip+1) 6 d0 for all1 6 p 6 l−1, then {fifi1 · · · fil}
is geometrically L2-NED uniformly in i and n.

(ii) supλ∈Λ(ln |In − λfDnWn| − E ln |In − λfDnWn|)/n
p
−→ 0.

To show the uniform convergence, we adopt a strategy fromQu
and Lee (2013). For any given small positive number ϵ > 0, we can
divide the summation in Eq. (7) into two parts (l 6 K0 & l > K0)
for some constant K0 that does not depend on n. We show the
uniform convergence of the first part by properties of NED random
fields and that the second part can be bounded by ϵ/2, and thus
we establish the uniform convergence. Details of the proof can be
found in Appendices.

Theorem 1. Under Assumptions 1–9, the MLE θ̂ is a consistent
estimator of θ0.

With consistency of the estimator, we next discuss the asymp-
totic distribution of MLE. The partial derivatives of the log-
likelihood function in Eq. (4) are ∂ ln Ln(θ)

∂λ
=

1
σ 2 (WnSn)′[F−1(Sn) −

λWnSn−Xnβ]−tr[(In−λfDnWn)
−1fDnWn], ∂ ln Ln(θ)

∂β
=

1
σ 2 X ′

n[F
−1(Sn)−

λWnSn − Xnβ] and ∂ ln Ln(θ)
∂σ 2 = −

n
2σ 2 +

1
2σ 4 [F−1(Sn) − λWnSn −

Xnβ]
′
[F−1(Sn) − λWnSn − Xnβ]. To deduce the CLT, we write the

score as a summation. Denote zi,n =
n

j=1wij,nsj,n and rii,n =
∞

l=0 λ
l
0((fDnWn)

l+1)ii. From the first order condition, we have

1
√
n
∂ ln Ln(θ0)

∂θ

=
1

√
n

n
i=1

zi,nϵi,n/σ 2
0 − rii,n − E[zi,nϵi,n/σ 2

0 − rii,n]
x′

i,nϵi,n/σ
2
0

(ϵ2i,n − σ 2
0 )/(2σ

4
0 )

 . (8)

To prove the asymptotic normality of the estimator, a key step
is to show that the above sequence of scores would obey a CLT. For
that purpose, we need additional regularity conditions:

Assumption 10. θ0 is in the interior of the parameter spaceΘ .

Assumption 11. (i) For some δ > 0, the α-mixing coefficient of
{xi,n}ni=1 in Assumption 7 satisfies
∞
r=1

rd(τ∗+1)α̂
δ

4+2δ (r) < ∞,

where τ∗ = δτ/(2 + δ). (ii) ΣX ≡ p limn→∞ n−1n
i=1 x

′

i,nxi,n is a
positive definite matrix.

Assumption 12. Σ0 = limn→∞Σn exists and is nonsingular,

whereΣn =
1
nVar(

n
i=1(

zi,nϵi,n
σ 2
0

− rii,n,
xi,nϵi
σ 2
0
,
ϵ2i,n−σ

2
0

2σ 4
0
)′).

By our assumptions, we know that 1
√
n

n
i=1(xi,nϵi,n/σ

2
0 , ϵ

2
i,n −

σ 2
0 )

′
d
−→ N(0, diag(ΣX , 2σ 4

0 )), where the asymptotic variance is
nonsingular. Therefore, the nonsingularity of Σ0 may be mainly
captured by the asymptotic variance of 1
√
n

n
i=1(zi,nϵi,n/σ

2
0 − rii,n)

via the inverse form of a partitioned matrix. Alternatively, one
may investigate the concentrated log likelihood function ln Lcn(λ)
of λ with β and σ 2 concentrated out. The corresponding asym-
ptotic variance of the normalized score of λ is limn→∞

1
nVarn

i=1(
zi,nϵi,n
σ 2
0

− rii,n) − B[diag(limn→∞
1
n

n
i=1 x

′

i,nxi,n, 2σ
4
0 )]

−1B =

− limn→∞
1
nE[∂

2 ln Lcn(λ0)/∂λ2], where B = limn→∞
1
n cov(

n
i=1

(
zi,nϵi,n
σ 2
0

− rii,n), (
xi,nϵi,n
σ 2
0
, ϵ2i,n − σ 2

0 )). Thus, Assumption 12 preserves

the local identification in the limit.
To establish the asymptotic normality, we apply the CLT from

Jenish and Prucha (2012). To do so,we show that {[( zi,nϵi,n
σ 2
0

−rii,n)2+

(
xi,nϵi
σ 2
0
)2 + (

ϵ2i,n−σ
2
0

2σ 4
0
)2]1/2}ni=1 is uniformly and geometrically NED.

Then with Assumption 12, we have the following result:

Proposition 4. Under Assumptions 1–12, 1
√
n

n
i=1(

zi,nϵi,n
σ 2
0

− rii,n,

xi,nϵi,n
σ 2
0
,
ϵ2i,n−σ

2
0

2σ 4
0
)′

d
−→ N(0,Σ0).

In order to derive the asymptotic distribution of an extremum
estimator, as usual, one may investigate the linearization of the
first order condition which characterizes the extremum estimator,
by the mean value theorem (see, e.g Amemiya (1985)). For the ML
estimation, this linearization will involve the product of the score
and the Hessian matrix of the log likelihood. With Proposition 4,
the score vector is asymptotically normal. The Hessian matrix can
be shown to converge uniformly in probability to a non-singular
matrix. Thus, the asymptotic distribution can be derived as in the
following theorem:

Theorem 2. Under Assumptions 1–12,
√
n(θ̂n − θ0)

d
−→ N(0,Σ−1

0 ).

4. IV and two stage least square estimation

In this section,we consider IV estimation of ourmodel.We keep
Assumptions 1–4. Because IV estimation is distributionally free, the
independence of disturbances in Assumption 4 will be sufficient
and there is no need for the use of the normality in Assumption 6.
With this independence assumption,


si,n

remains a uniformly

and geometrically L2-NED random field on {ϵn} in Proposition 2.
IV estimation can be applied to the model expressed as Tn =

λWnSn + Xnβ + ϵn = Znδ + ϵn, where Zn = (WnSn, Xn) and δ =

(λ, β ′)′. For general 2SLS estimation, letQn be an IVmatrix. In prac-
tice, possible IV variables can be Xn and WnX2,n, where X2,n is the
submatrix of Xn with the exclusion of the intercept term ιn when
Wn is row normalized such that Wnιn = ιn. But if Wn is not row
normalized, WnXn can be used because Wnιn will not be equal to
ιn and may not be perfectly collinear with Xn. In addition to WnXn,
W 2

n Xn may also be used. With the IV matrix Qn = (q′

1,n, . . . , q
′
n,n)

′,
the corresponding IV estimator isδn = [Z ′

nQn(Q ′

nQn)
−1Q ′

nZn]
−1Z ′

nQn(Q ′

nQn)
−1Q ′

nTn. (9)

Assumption 13. (i) The instrumental variable {qi,n}ni=1 is a geome-
tric L2 NED random field on {xi,n}ni=1 uniformly in i and n.6

6 We can relax {qi,n}ni=1 to be an NED random field with NED coefficient s−r for
some constant r > 0, but then we need to add a constraint on the ξ in condition
(ii): r > d(2ξ − 4)/(ξ − 4). To simplify the statement, we just assume geometric
L2 NED. We have an older version of this paper where we assume that {xi,n}ni=1 and
{qi,n}ni=1 are exogenous deterministic variables, which are uniformly bounded. In
that setting, the spatial process properties would not be needed.
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(ii) supi,n ∥qi,n∥ξ < ∞ for some ξ > 4. (iii) Qn and ϵn are indepen-
dent for all n. (iv) ΣQQ ≡ p limn→∞ Q ′

nQn/n exists and is positive
definite. (v) ΣZQ ≡ p limn→∞(EZn)′Qn/n exists and has full row
rank K + 1.

It is not difficult to verify that Xn and WnX2,n satisfy As-
sumption 13. With Assumption 13, {(wi·,nSn, xi,n) ⊗ qi,n}ni=1 and
{ϵi,nqi,n}ni=1 are uniformly Lmin(ξ/2,2.5) bounded and geometric NED
uniformly in i and n. Therefore, we have 1

nQ
′
nϵn = op(1), (Zn −

EZn)′Qn/n
p
−→ 0 and

Corollary 2. p limn→∞ Z ′
nQn/n = ΣZQ .

Then, the consistency of the IV estimator δn follows because

δn − δ =


1
n
Z ′

nQn


1
n
Q ′

nQn

−1 1
n
Q ′

nZn

−1

×
1
n
Z ′

nQn


1
n
Q ′

nQn

−1 1
n
Q ′

nϵn = op(1). (10)

As usual, σ 2 can be estimated by the sample average of the esti-
mated residuals,

σ 2
n =

1
n
(Tn − λnWnSn − Xnβn)

′(Tn − λnWnSn − Xnβn). (11)

With Corollary 1, Assumptions 6 and 7, 1
n (WnSn)′WnSn, 1

nϵ
′
nWnSn

and 2
n (WnSn)′Xn are all Op(1). Because

σ 2
n =

1
n
[ϵn − (λn − λ0)WnSn − Xn(βn − β0)]

′

× [ϵn − (λn − λ0)WnSn − Xn(βn − β0)]

=
1
n
ϵ′

nϵn +
1
n
(λn − λ0)

2(WnSn)′WnSn

+ (βn − β0)
′
1
n
X ′

nXn(βn − β0)−
2
n
(λn − λ0)ϵ

′

nWnSn

−
2
n
ϵ′

nXn(βn − β0)+
2
n
(λn − λ0)

× (WnSn)′Xn(βn − β0), (12)

the consistency of λn and βn implies the consistency of σ 2
n .

We can apply the CLT in Jenish and Prucha (2012) to Q ′
nϵn/

√
n

and obtain the asymptotic normality for the 2SLS estimator:

√
n(δn − δ)

d
−→ N(0, σ 2

0 (ΣZQΣ
−1
QQΣ

′

ZQ )
−1). (13)

If EZn is taken as an IV matrix, then the asymptotic variance be-
comes limn→∞ EZ ′

nEZn/n. Since (EZ
′
nQn)(Q ′

nQn)
−1(QnEZn) 6 EZ ′

nEZn
for any IV matrix Qn, EZn is the optimal IV matrix. In sum, we have

Theorem 3. Under Assumptions 1–4, 7, 11 and 13,
√
n(δn − δ)

d
−→

N(0, σ 2
0 (ΣZQΣ

−1
QQΣQZ )

−1). Furthermore, EZn is the optimal IVmatrix,
with which the asymptotic variance of the estimator is σ 2

0 (EZ
′
nEZn)

−1.

As the distribution of ϵi,n is unknown, the optimal IV estimation
would not have a closed form expression for convenient use.7
Intuitively, we propose a feasible simulated optimal IV estimation:

(1) Use a general 2SLS estimator δn derived from using some IVs
such as (Xn,WnXn), and get the residuals ϵi,n’s.
7 Even if ϵi,n is known to be normally distributed, a closed form expression is still

hard to get due to the nonlinearity of the model.
(2) Use the empirical distribution of ϵi,n’s to generate R number
of ϵrn = (ϵ1,rn, . . . , ϵn,rn)

′, and use these to generate RSrn’s, and
evaluate their empirical mean as ESn.

(3)Use (WESn, Xn) as IV to obtainδn = [(WESn, Xn)
′Zn]−1(WESn,

Xn)
′Tn.
The Monte Carlo experiments in Section 5 show that the

simulated optimal IV estimator is more efficient than the 2SLS
estimator in most cases.

The 2SLS estimation also provides a method to test a speci-
fied functional form F(·) against an alternative: H0: the true func-
tional form is F1; H1: the alternative functional form is F2. Denote
ti,n = F−1

1 (si,n) and t̃i,n = F−1
2 (si,n). Let γ ≠ 0 be any con-

stant. We consider the following model: (1 − a)ti,n + aγ t̃i,n =

λwi·,nSn + xi,nβ + ϵi,n, i.e.,

ti,n = a(ti,n − γ t̃i,n)+ λwi·,nSn + xi,nβ + ϵi,n. (14)

Then H0 is equivalent to a = 0 and H1 is equivalent to a = 1.
We can show that {t̃i,n} is also an NED random field for several
widely used distributional families when the true F1(·) is a logit (or
normal) transformation.8 Because ti,n is strictly increasing with re-
spect to t̃i,n, usually there is serious collinearity between ti,n and
t̃i,n. Thus we should choose a γ to eliminate some of the possi-
ble collinearity. Let f1(·) and f2(·) be respectively the derivatives
of F1(·) and F2(·). Since t̃i,n = F−1

2 (si,n) = F−1
2 (F1(ti,n)),we have

dt̃i,n/dti,n = f1(ti,n)/f2(t̃i,n). That is dti,n/dt̃i,n = f2(t̃i,n)/f1(ti,n).
Thuswe chooseγ be themean of f2(t̃i,n)/f1(ti,n). Experiments show
that this can significantly reduce the multicollinearity. For exam-
ple, when F1(·) is the logit and F2(x) is the standard normal distri-
bution function, the R2 of regressing ti,n on t̃i,n is about 0.99 while
the R2 of regressing ti,n on ti,n − γ t̃i,n is only about 0.05. Bootstrap-
ping is utilized to obtain amore precise critical value to testH0. We
can do the test in the following steps:

(1) Estimate ti,n = λwi·,nSn + xi,nβ+ ϵi,n by 2SLS and obtain the
residuals ϵn, whose empirical distribution is Fϵn ;

(2) Generate n random draws ϵ(r)i,n ’s from the distribution Fϵn ,
and then generate S(r)n by contraction mapping, calculate γ (r) and
estimate the equation t(r)i,n = a(t(r)i,n −γ (r) t̃(r)i,n )+λwi·,nS

(r)
n + xi,nβ+

ϵ
(r)
i,n with 2SLS to obtain â(r): we can adopt Xn,WnX2,n andW 2

n X2,n as
the IV’s, where X2,n is the exogenous variable matrix without the
constant;

(2) Repeat Step (2) R times and obtain the bootstrap critical
value for 5% level of significance for a one-sided test H0 : a = 0
against H1 : a = 1.

5. Monte Carlo experiments

5.1. Estimation

In this section, we conduct some Monte Carlo experiments to
study the finite sample properties and the robustness of our esti-
mators. Specifically,wewould like to investigate the following four
issues in the experiments: (1) comparing the marginal effects of
nonlinear and linear models; (2) the precision of predictions from
nonlinear and linear models if the true model is nonlinear; (3) the
finite sample performance of our estimators; and (4) the robust-
ness of the QMLE if ϵi is not normally distributed.

In our experiments, si,n = F(λwi.,nSn+β1+β2xi,n+ϵi,n), where
the true values of coefficients are (β1,0, β2,0) = (−1, 1)′ and ϵi,n’s
are i.i.d. N(0, σ 2

0 ). The xi,n’s are designed to allow spatial correla-
tion: (x1,n, . . . , xn,n)′ ∼ 1.5(In −0.2Wn)

−1N(0, In). The generation

8 See the supplement material for the proof (see Appendix C).
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Fig. 1. Self marginal effects when true F(x) = Φ(x).
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Fig. 2. Self marginal effects when true F(x) = (1 + e−x)−1 .

of Wn will be discussed in the next paragraph. In the experiments,
three different nonlinear functions, namely, F(x) = 1/(1 + e−x),
F(x) = Φ(x) and F(x) = 0.5(x +

√
x2 + 4), are considered. The

third function is a strictly increasing convex function with two
asymptotes, y = x and y = 0.When F(x) = 1/(1+e−x) and F(x) =

Φ(x), σ0’s are respectively 1.5 and 1, since the normal distribution
has thinner tails while the logit distribution has relatively thicker
tails. The true λ0 is designed to be 1 or 1.5 so that the contraction
mapping holds for each of these twomodels.When F(x) = 0.5(x+
√
x2 + 4), λ0 is 0.4 or 0.7.We consider various sample sizes of 100,

200, 500 and 1000. Detailed parameters with corresponding de-
signs on xi,n and F(·) are noted in each of the tables in Appendices.

The weights matrixWn is generated from county data in the US.
When the sample sizes n are 100, 200 and 500, Wn is generated
from 761 counties in 10 states as in Lin and Lee (2010). First, we
construct W0n as follows: Wij,0n equals 1 if county i and county j
are contiguous, zero otherwise. In our Monte Carlo experiments,
we generate Wn randomly from W0n as follows: we generate a
natural numberm uniformly distributed between 1 and (761− n),
and then use the entries of W0n that are between the mth row
and the (m + n − 1)th row and between the mth column and the
(m + n − 1)th column to form an n by nmatrix Wn. Then we row-
normalize Wn to get the weights matrixWn. When the sample size
is 1000, we do it in a similar way, except thatWn is generated from
all 3142 counties in the US.

As the conditions of the contraction mapping theorem hold, we
can generate Sn using contraction mapping. We start by letting
s(0)i,n = F(β1+β2xi,n+ϵi,n), then s(j+1)

i,n = F(λWi·,nS
(j)
n +β1+β2xi,n+

ϵi,n). The iteration stops when maxi |s
(j+1)
i,n − s(j)i,n| < 10−8.

Besides MLE, we also do IV and 2SLS estimation. For IV esti-
mation, we use WnX2,n = Wn(x1,n, . . . , xn,n)′ as the IV for WnSn,
where X2,n is the second column of Xn.9 For 2SLS, we use WnX2,n
and W 2

n X2,n, as the IVs forWnSn.
In the last experiment, we investigate the performance of the

estimators when the normality of the error terms does not hold.
We try four different distributions: uniform, t(5), mixed normal
andβ(0.5, 0.5) distributions. Tomake our results here comparable
to those in the normal distribution case, we normalize and
scale these distributions such that their expectations are all zero
and their standard deviations are all 1.5. Explicitly, we generate
random numbers from the following four distributions: mixed
normal (with half probabilityN(6/

√
17, 9/68) and half probability

N(−6/
√
17, 9/68));

√
1.35 times t(5), where t(5) is the Student

t-distribution with five degrees of freedom; uniform distribution
U(−1.5

√
3, 1.5

√
3); and

√
18(β(0.5, 0.5) − 0.5), where β(a, b)

is the two-parameter beta distribution with parameters a and b.
Notice that the density of the mixed normal has double peaks and
that β(0.5, 0.5) has a U shape on (0, 1).

To get the empirical means, standard deviations and root mean
squared errors (RMSE) of the estimates, we do 1000 repetitions for
each design.

Marginal effects of exogenous variables are often considered in
empirical studies. Hence we first consider the marginal effects in
the Monte Carlo experiments. For illustrative purposes, we focus
on the self marginal effect, ∂si,n/∂xi,n = β2[(In − λfDnWn)

−1fDn ]ii.
With a sample size n = 200 and F(x) = Φ(x), we show the self
marginal effects in Fig. 1; when F(x) = 1/(1 + e−x), the result is
shown in Fig. 2. We have the true self marginal effects on the hori-
zontal axis. Thus, points on the 45-degree line are equal to the true
self marginal effects.We can see from the graph that the estimated
self marginal effects are muchmore accurate than those estimated
by linear models. If we use a linear SAR model, the estimated self
marginal effects will be nearly the same for all individuals. Differ-
ent sample sizes and parameters have been tried and their figures
are similar to Figures 1 and 2.10

Second, we examine the predictions of different models. Here
let us recall binary choicemodels, which are usually estimated by a
probit or logit model, though the linear probability model is easier
and usually gives the same signs for estimators of coefficients. One
of the drawbacks of the linear probability model for binary choice
models is that its predicted probability can be greater than 1 or less
than zero. When the range of dependent variables is not R, similar
phenomena appear. As can be seen from Fig. 5, 11% of predicted
values of the dependent variable from the linear SARmodel are out
of the interval (0, 1)when the truemodel is si,n = F(λwi.,nSn+β1+

β2xi,n + ϵi,n), with F(x) = 1/(1 + e−x). Besides, we compare the
distance between Sn and its estimated value Ŝn by 1-norm and 2-
norm: ∥Sn − Ŝ(true)n ∥1 = 16.3704 < 19.2970 = ∥Sn − Ŝ(linear)n ∥1 and
∥Sn− Ŝ(true)n ∥2 = 2.1037 < 2.3008 = ∥Sn− Ŝ(linear)n ∥2. These results
show that the true nonlinearmodel has better prediction. To check
the robustness of our conclusion, we also try various sample sizes,
parameters and functional forms andwe obtain similar figures and
conclusions.

From Tables 1–3, we have several observations:
(1) As the sample size increases, both biases and variances of

estimators decrease. This verifies the consistency of the estimators.
(2) For most experiments, the biases of IV, 2SLS and simulated

optimal IV estimates are less than the bias of MLE.
(3)Whenwe compare the variance of estimators, the simulated

optimal IV estimation is more efficient than the 2SLS (especially
when the sample size n > 200), and the 2SLS is a little bit more
efficient than the IV estimation. The variance of MLE is obviously
less than those of IV/2SLS/optimal IV estimators. For instance, from

9 The first column of Xn is the constant intercept term.
10 Those figures can be found in a supplement file (see Appendix C).
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Table 1
Estimation results when F(x) = 1/(1 + exp(−x)).

λ0 n IV 2SLS Optimal IV MLE
mean sd RMSE mean sd RMSE mean sd RMSE mean sd RMSE

1

100
λ 0.9111 1.3373 1.3402 0.9784 1.2916 1.2918 0.9028 1.3840 1.3875 0.8669 0.8282 0.8389
β1 −0.9598 0.6123 0.6136 −0.9900 0.5919 0.5919 −0.9558 0.6339 0.6354 −0.9409 0.4006 0.4050
β2 0.9980 0.1033 0.1033 0.9955 0.1029 0.1030 0.9983 0.1034 0.1034 1.0045 0.0944 0.0945

200
λ 1.0216 0.9388 0.9390 1.0604 0.9266 0.9285 1.0105 0.9147 0.9147 0.9522 0.5506 0.5526
β1 −1.0084 0.4007 0.4008 −1.0243 0.3960 0.3967 −1.0037 0.3916 0.3916 −0.9802 0.2499 0.2506
β2 0.9989 0.0889 0.0889 0.9963 0.0884 0.0884 0.9995 0.0879 0.0879 1.0056 0.0735 0.0737

500
λ 0.9300 0.7243 0.7276 0.9541 0.7138 0.7153 0.9237 0.7069 0.7110 0.9505 0.4115 0.4144
β1 −0.9677 0.3101 0.3117 −0.9777 0.3057 0.3065 −0.9650 0.3025 0.3045 −0.9763 0.1850 0.1865
β2 1.0009 0.0499 0.0499 1.0000 0.0496 0.0496 1.0011 0.0493 0.0493 1.0013 0.0443 0.0444

1000
λ 0.9899 0.2563 0.2565 0.9921 0.2540 0.2542 0.9912 0.2470 0.2471 0.9901 0.1576 0.1579
β1 −0.9961 0.0962 0.0963 −0.9969 0.0955 0.0955 −0.9966 0.0933 0.0934 −0.9963 0.0647 0.0648
β2 0.9983 0.0327 0.0327 0.9982 0.0326 0.0327 0.9983 0.0324 0.0325 0.9988 0.0312 0.0312

1.5

100
λ 1.4176 1.2879 1.2906 1.4796 1.2473 1.2475 1.4101 1.2901 1.2932 1.3715 0.7902 0.8006
β1 −0.9594 0.6393 0.6406 −0.9896 0.6197 0.6198 −0.9557 0.6415 0.6430 −0.9381 0.4130 0.4176
β2 0.9982 0.1037 0.1037 0.9957 0.1033 0.1034 0.9985 0.1036 0.1036 1.0048 0.0945 0.0946

200
λ 1.5219 0.8984 0.8987 1.5575 0.8879 0.8897 1.5021 0.8694 0.8694 1.4501 0.5201 0.5225
β1 −1.0093 0.4158 0.4159 −1.0251 0.4112 0.4120 −1.0006 0.4033 0.4033 −0.9776 0.2554 0.2564
β2 0.9989 0.0890 0.0890 0.9964 0.0885 0.0885 1.0001 0.0878 0.0878 1.0060 0.0733 0.0736

500
λ 1.4341 0.6870 0.6902 1.4547 0.6777 0.6792 1.4257 0.6735 0.6776 1.4527 0.3899 0.3928
β1 −0.9669 0.3200 0.3217 −0.9762 0.3157 0.3166 −0.9631 0.3135 0.3156 −0.9755 0.1903 0.1918
β2 1.0009 0.0501 0.0501 1.0002 0.0498 0.0498 1.0013 0.0496 0.0496 1.0013 0.0444 0.0444

1000
λ 1.4848 0.3872 0.3875 1.4881 0.3842 0.3844 1.4854 0.3727 0.3730 1.4823 0.2374 0.2380
β1 −0.9928 0.1807 0.1808 −0.9942 0.1794 0.1795 −0.9931 0.1746 0.1748 −0.9917 0.1175 0.1178
β2 0.9983 0.0327 0.0328 0.9982 0.0327 0.0327 0.9983 0.0325 0.0325 0.9989 0.0312 0.0312

F(x) = 1/(1 + exp(−x)), X2,n = (x1,n, . . . , xn,n)′ ∼ 1.5(In − 0.2Wn)
−1N(0, In), ϵi iid ∼ N(0, 1.5), β0 = (−1, 1)′ .

IV: useWnX2,n as the IVs ofWnSn . 2SLS: useWnX2,n and W 2
n X2,n as the IV of WnSn . Repetition: 1000.
Table 2
Estimation results when F(x) = Φ(x).

λ0 n IV 2SLS Optimal IV MLE
mean sd RMSE mean sd RMSE mean sd RMSE mean sd RMSE

1

100
λ 0.9440 0.8297 0.8316 0.9837 0.8005 0.8006 0.9396 0.8084 0.8107 0.9185 0.5033 0.5098
β1 −0.9777 0.3403 0.3410 −0.9934 0.3288 0.3289 −0.9756 0.3321 0.3330 −0.9681 0.2233 0.2255
β2 0.9982 0.1041 0.1041 0.9957 0.1037 0.1038 0.9987 0.1040 0.1040 1.0048 0.0946 0.0947

200
λ 1.0145 0.5857 0.5859 1.0367 0.5786 0.5798 1.0058 0.5678 0.5678 0.9717 0.3352 0.3364
β1 −1.0050 0.2208 0.2208 −1.0129 0.2184 0.2188 −1.0016 0.2154 0.2154 −0.9898 0.1389 0.1392
β2 0.9989 0.0890 0.0890 0.9965 0.0885 0.0886 0.9998 0.0879 0.0879 1.0056 0.0733 0.0735

500
λ 0.9558 0.4547 0.4569 0.9687 0.4477 0.4488 0.9514 0.4375 0.4402 0.9686 0.2524 0.2544
β1 −0.9820 0.1705 0.1715 −0.9867 0.1680 0.1685 −0.9804 0.1642 0.1654 −0.9866 0.1020 0.1029
β2 1.0009 0.0500 0.0500 1.0002 0.0496 0.0496 1.0012 0.0491 0.0491 1.0013 0.0443 0.0444

1000
λ 0.9899 0.2563 0.2565 0.9921 0.2540 0.2542 0.9912 0.2470 0.2471 0.9901 0.1576 0.1579
β1 −0.9961 0.0962 0.0963 −0.9969 0.0955 0.0955 −0.9966 0.0933 0.0934 −0.9963 0.0647 0.0648
β2 0.9983 0.0327 0.0327 0.9982 0.0326 0.0327 0.9983 0.0324 0.0325 0.9988 0.0312 0.0312

1.5

100
λ 1.4519 0.7725 0.7740 1.4862 0.7482 0.7483 1.4446 0.7556 0.7576 1.4258 0.4592 0.4651
β1 −0.9777 0.3641 0.3648 −0.9934 0.3532 0.3533 −0.9742 0.3563 0.3573 −0.9666 0.2326 0.2350
β2 0.9984 0.1047 0.1047 0.9961 0.1043 0.1043 0.9990 0.1045 0.1045 1.0051 0.0946 0.0947

200
λ 1.5147 0.5392 0.5394 1.5340 0.5335 0.5346 1.4975 0.5176 0.5176 1.4698 0.3010 0.3025
β1 −1.0059 0.2334 0.2335 −1.0138 0.2311 0.2315 −0.9988 0.2253 0.2253 −0.9876 0.1430 0.1436
β2 0.9989 0.0891 0.0891 0.9967 0.0886 0.0886 1.0008 0.0877 0.0877 1.0062 0.0729 0.0731

500
λ 1.4608 0.4113 0.4131 1.4703 0.4052 0.4063 1.4546 0.3994 0.4020 1.4716 0.2272 0.2290
β1 −0.9816 0.1785 0.1794 −0.9855 0.1759 0.1765 −0.9789 0.1734 0.1747 −0.9861 0.1059 0.1068
β2 1.0010 0.0503 0.0503 1.0004 0.0499 0.0499 1.0014 0.0495 0.0495 1.0014 0.0444 0.0444

1000
λ 1.4906 0.2355 0.2357 1.4921 0.2322 0.2323 1.4904 0.2257 0.2259 1.4893 0.1433 0.1437
β1 −0.9959 0.1021 0.1022 −0.9965 0.1009 0.1009 −0.9958 0.0985 0.0986 −0.9954 0.0675 0.0677
β2 0.9984 0.0333 0.0333 0.9983 0.0331 0.0332 0.9984 0.0329 0.0329 0.9989 0.0314 0.0314

F(x) = Φ(x), X2,n = (x1,n, . . . , xn,n)′ ∼ (In − 0.2Wn)
−1N(0, In), ϵi iid ∼ N(0, 1), β0 = (−1, 1)′ .

IV: useWnX2,n as the IVs ofWnSn . 2SLS: useWnX2,n and W 2
n X2,n as the IV of WnSn . Repetition: 1000.
Table 1, when λ0 = 1, we see that the standard errors of the
simulated optimal IV estimators are greater than those of the MLE
by 56% ∼ 71%.

(4) The RMSE of MLE is obviously less than those of IV/2SLS/
optimal IV estimators. The reason is that the standard errors dom-
inate biases. We can see that RMSE ≈ s.d.
We summarize the results when the error terms are not
normally distributed in Tables 4 and 5. We can see that the biases
of IV/2SLS/optimal IV estimators, but not MLE, decrease when the
sample size n increases. This verifies that the normal distribution
of the error terms needs to be correctly specified forMLE but needs
not be so for the other three estimators.
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Table 3
Estimation results when F(x) = 0.5(x +

√
x2 + 4).

λ0 n IV 2SLS Optimal IV MLE
mean sd RMSE mean sd RMSE mean sd RMSE mean sd RMSE

0.4

100
λ 0.3796 0.2418 0.2427 0.3910 0.2341 0.2343 0.3710 0.2294 0.2312 0.3616 0.1519 0.1567
β1 −0.9644 0.3828 0.3845 −0.9812 0.3713 0.3718 −0.9518 0.3645 0.3677 −0.9426 0.2668 0.2729
β2 0.9984 0.1047 0.1047 0.9959 0.1042 0.1043 1.0007 0.1036 0.1036 1.0074 0.0953 0.0956

200
λ 0.3995 0.1637 0.1637 0.4044 0.1601 0.1602 0.3904 0.1531 0.1534 0.3862 0.1018 0.1027
β1 −0.9994 0.2253 0.2253 −1.0053 0.2209 0.2210 −0.9878 0.2164 0.2167 −0.9851 0.1596 0.1603
β2 0.9993 0.0883 0.0883 0.9975 0.0873 0.0874 1.0027 0.0846 0.0846 1.0069 0.0743 0.0747

500
λ 0.3848 0.1434 0.1442 0.3884 0.1404 0.1409 0.3813 0.1358 0.1371 0.3876 0.0830 0.0839
β1 −0.9752 0.2090 0.2105 −0.9803 0.2052 0.2061 −0.9703 0.1995 0.2017 −0.9802 0.1303 0.1318
β2 1.0010 0.0498 0.0498 1.0003 0.0493 0.0493 1.0016 0.0486 0.0486 1.0016 0.0447 0.0447

1000
λ 0.3964 0.0817 0.0818 0.3969 0.0806 0.0806 0.3966 0.0787 0.0787 0.3955 0.0528 0.0530
β1 −0.9926 0.1216 0.1219 −0.9933 0.1203 0.1205 −0.9929 0.1182 0.1185 −0.9918 0.0851 0.0855
β2 0.9984 0.0328 0.0328 0.9983 0.0327 0.0327 0.9984 0.0325 0.0325 0.9989 0.0313 0.0313

0.7

100
λ 0.6874 0.1374 0.1380 0.6920 0.1329 0.1332 0.6755 0.1322 0.1344 0.6741 0.0856 0.0894
β1 −0.9698 0.3187 0.3201 −0.9793 0.3102 0.3109 −0.9449 0.3096 0.3145 −0.9461 0.2294 0.2356
β2 0.9992 0.1066 0.1066 0.9974 0.1060 0.1061 1.0047 0.1050 0.1051 1.0099 0.0964 0.0969

200
λ 0.6994 0.0866 0.0866 0.6998 0.0837 0.0837 0.6917 0.0783 0.0788 0.6904 0.0540 0.0549
β1 −0.9997 0.1759 0.1759 −1.0004 0.1714 0.1714 −0.9863 0.1675 0.1681 −0.9864 0.1333 0.1339
β2 0.9996 0.0873 0.0873 0.9993 0.0855 0.0855 1.0049 0.0820 0.0821 1.0083 0.0738 0.0743

500
λ 0.6906 0.0835 0.0841 0.6909 0.0803 0.0808 0.6864 0.0776 0.0788 0.6908 0.0491 0.0500
β1 −0.9785 0.1731 0.1744 −0.9791 0.1679 0.1692 −0.9703 0.1632 0.1659 −0.9798 0.1126 0.1145
β2 1.0012 0.0500 0.0500 1.0010 0.0490 0.0490 1.0024 0.0482 0.0482 1.0021 0.0449 0.0449

1000
λ 0.6973 0.0521 0.0522 0.6974 0.0498 0.0499 0.6963 0.0487 0.0489 0.6958 0.0334 0.0337
β1 −0.9927 0.1077 0.1080 −0.9928 0.1040 0.1043 −0.9907 0.1025 0.1029 −0.9901 0.0765 0.0771
β2 0.9986 0.0341 0.0342 0.9986 0.0337 0.0338 0.9988 0.0334 0.0335 0.9994 0.0319 0.0319

F(x) = 0.5(x +
√
x2 + 4), X2,n = (x1,n, . . . , xn,n)′ ∼ (In − 0.2Wn)

−1N(0, In), ϵi iid ∼ N(0, 1), β0 = (−1, 1)′ .
IV: useWnX2,n as the IVs ofWnSn . 2SLS: use WnX2,n andW 2

n X2,n as the IV of WnSn . Repetition: 1000.
Table 4
Estimation results without normality (I).

ϵn n IV 2SLS Optimal IV MLE
mean sd RMSE mean sd RMSE mean sd RMSE mean sd RMSE

MN

100
λ 0.8899 1.3429 1.3474 0.9520 1.3082 1.3090 0.8885 1.3088 1.3135 1.0533 0.7791 0.7809
β1 −0.9414 0.6312 0.6339 −0.9696 0.6166 0.6173 −0.9405 0.6170 0.6199 −1.0168 0.3906 0.3909
β2 0.9957 0.1052 0.1053 0.9933 0.1044 0.1047 0.9959 0.1047 0.1048 0.9938 0.0927 0.0929

200
λ 0.9798 1.0044 1.0046 1.0213 0.9954 0.9956 0.9676 0.9915 0.9920 1.1200 0.5496 0.5625
β1 −0.9892 0.4353 0.4354 −1.0066 0.4305 0.4305 −0.9843 0.4293 0.4296 −1.0487 0.2525 0.2571
β2 1.0001 0.0933 0.0933 0.9975 0.0930 0.0930 1.0008 0.0924 0.0924 0.9931 0.0700 0.0704

500
λ 0.9771 0.7424 0.7427 0.9981 0.7349 0.7349 0.9720 0.7245 0.7251 1.2491 0.4170 0.4857
β1 −0.9905 0.3175 0.3177 −0.9993 0.3146 0.3146 −0.9882 0.3103 0.3105 −1.1047 0.1875 0.2147
β2 0.9991 0.0494 0.0494 0.9984 0.0493 0.0493 0.9993 0.0488 0.0488 0.9908 0.0431 0.0441

1000
λ 0.9757 0.4956 0.4962 0.9907 0.4931 0.4932 0.9700 0.4912 0.4921 1.2656 0.2745 0.3820
β1 −0.9884 0.2124 0.2127 −0.9946 0.2115 0.2116 −0.9860 0.2106 0.2111 −1.1093 0.1238 0.1652
β2 1.0002 0.0352 0.0352 0.9996 0.0353 0.0353 1.0004 0.0352 0.0352 0.9898 0.0309 0.0325

t(5)

100
λ 0.8338 1.3304 1.3407 0.8887 1.2960 1.3008 0.8301 1.3020 1.3130 0.6718 0.8859 0.9448
β1 −0.9243 0.6099 0.6146 −0.9488 0.5944 0.5966 −0.9227 0.5958 0.6008 −0.8530 0.4233 0.4481
β2 1.0013 0.1032 0.1032 0.9991 0.1028 0.1028 1.0015 0.1023 0.1023 1.0126 0.0955 0.0964

200
λ 1.0068 0.9336 0.9336 1.0362 0.9273 0.9280 0.9890 0.9000 0.9001 0.7447 0.6286 0.6785
β1 −1.0005 0.3966 0.3966 −1.0126 0.3935 0.3937 −0.9934 0.3825 0.3825 −0.8935 0.2763 0.2961
β2 0.9991 0.0902 0.0902 0.9971 0.0903 0.0903 1.0003 0.0887 0.0887 1.0193 0.0798 0.0821

500
λ 0.9422 0.7286 0.7308 0.9624 0.7195 0.7205 0.9353 0.7058 0.7088 0.7344 0.4885 0.5561
β1 −0.9723 0.3122 0.3135 −0.9807 0.3083 0.3089 −0.9693 0.3035 0.3050 −0.8861 0.2123 0.2409
β2 0.9996 0.0487 0.0487 0.9989 0.0486 0.0486 0.9999 0.0484 0.0484 1.0084 0.0465 0.0473

1000
λ 0.9984 0.4910 0.4911 1.0084 0.4884 0.4885 0.9952 0.4755 0.4755 0.7302 0.3187 0.4176
β1 −1.0016 0.2066 0.2066 −1.0057 0.2055 0.2055 −1.0003 0.2006 0.2006 −0.8917 0.1401 0.1771
β2 1.0003 0.0366 0.0366 0.9999 0.0365 0.0365 1.0004 0.0363 0.0363 1.0114 0.0333 0.0352

MN: mixed normal distribution: half probability N(6/
√
17, 9/68), half probability N(−6/

√
17, 9/68).

t(5):
√
1.35t(5).

F(x) = 1/(1 + exp(−x)), X2,n = (x1,n, . . . , xn,n)′ ∼ 1.5(In − 0.2Wn)
−1N(0, In), λ0 = 1, β0 = (−1, 1)′ .

IV: useWnX2,n as the IVs ofWnSn . 2SLS: use WnX2,n andW 2
n X2,n as the IV of WnSn . Repetition: 1000.
5.2. Estimation with misspecified functional forms

Next, we consider consequences when estimating the model
with awrong nonlinear F(·). The results are summarized in Table 6.
Themodel si,n = F(λwi.,nSn+β1+β2xi,n+ϵi,n) has true parameters
(λ0, β10, β20, σ0) = (1,−1, 1, 1). We presume that in empirical
studies F(x) = (1 + e−x)−1 and F(x) = Φ(x) are most frequently
used, thus we focus on the estimation with these two functional
forms. But the true functional forms canbe one of four different dis-
tribution functions: logit F(x) = (1+ e−x)−1, normal F(x) = Φ(x),
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Table 5
Estimation results without normality (II).

ϵn n IV 2SLS Optimal IV MLE
mean sd RMSE mean sd RMSE mean sd RMSE mean sd RMSE

U

100
λ 0.8725 1.3414 1.3474 0.9438 1.3077 1.3089 0.8676 1.3219 1.3285 0.9950 0.7751 0.7751
β1 −0.9375 0.6288 0.6319 −0.9698 0.6122 0.6130 −0.9349 0.6219 0.6253 −0.9950 0.3859 0.3860
β2 0.9962 0.1036 0.1037 0.9935 0.1033 0.1035 0.9965 0.1030 0.1031 0.9961 0.0930 0.0931

200
λ 0.9563 0.9895 0.9904 0.9985 0.9810 0.9810 0.9382 0.9776 0.9796 1.0367 0.5673 0.5684
β1 −0.9811 0.4298 0.4302 −0.9986 0.4258 0.4258 −0.9738 0.4238 0.4246 −1.0157 0.2609 0.2614
β2 1.0032 0.0916 0.0917 1.0004 0.0914 0.0914 1.0042 0.0906 0.0907 0.9999 0.0710 0.0710

500
λ 0.9915 0.7217 0.7218 1.0130 0.7152 0.7153 0.9901 0.7019 0.7020 1.1477 0.4170 0.4424
β1 −0.9947 0.3102 0.3102 −1.0037 0.3076 0.3076 −0.9940 0.3019 0.3020 −1.0601 0.1891 0.1984
β2 0.9994 0.0481 0.0481 0.9987 0.0481 0.0481 0.9995 0.0476 0.0476 0.9950 0.0435 0.0438

1000
λ 0.9778 0.5006 0.5011 0.9920 0.4991 0.4992 0.9733 0.4919 0.4926 1.1602 0.2943 0.3350
β1 −0.9890 0.2127 0.2130 −0.9949 0.2121 0.2121 −0.9871 0.2093 0.2097 −1.0648 0.1301 0.1454
β2 1.0000 0.0360 0.0360 0.9994 0.0360 0.0360 1.0002 0.0359 0.0359 0.9935 0.0314 0.0321

B

100
λ 0.8712 1.3419 1.3481 0.9355 1.3121 1.3137 0.8627 1.3392 1.3462 1.0036 0.8063 0.8063
β1 −0.9275 0.6325 0.6367 −0.9568 0.6181 0.6196 −0.9234 0.6320 0.6366 −0.9904 0.3983 0.3984
β2 0.9989 0.1041 0.1041 0.9965 0.1039 0.1039 0.9993 0.1040 0.1040 0.9979 0.0925 0.0926

200
λ 0.8904 1.0185 1.0244 0.9257 1.0029 1.0056 0.9200 0.9809 0.9842 1.0881 0.5741 0.5808
β1 −0.9846 0.4338 0.4341 −0.9991 0.4261 0.4261 −0.9969 0.4181 0.4181 −1.0660 0.2625 0.2706
β2 1.0111 0.0906 0.0912 1.0089 0.0907 0.0911 1.0091 0.0891 0.0896 1.0005 0.0739 0.0740

500
λ 0.9809 0.7071 0.7073 1.0063 0.6992 0.6992 0.9761 0.6901 0.6905 1.2218 0.4036 0.4605
β1 −0.9917 0.3027 0.3028 −1.0023 0.2992 0.2992 −0.9894 0.2963 0.2965 −1.0928 0.1823 0.2045
β2 1.0003 0.0495 0.0495 0.9995 0.0494 0.0494 1.0005 0.0493 0.0493 0.9929 0.0449 0.0454

1000
λ 0.9944 0.5013 0.5013 1.0080 0.4962 0.4962 0.9930 0.4942 0.4943 1.2086 0.2785 0.3479
β1 −0.9981 0.2113 0.2113 −1.0038 0.2093 0.2093 −0.9975 0.2087 0.2087 −1.0870 0.1223 0.1501
β2 0.9995 0.0342 0.0342 0.9990 0.0341 0.0341 0.9995 0.0340 0.0340 0.9920 0.0297 0.0308

U: 1.5U(−
√
3,

√
3); B:

√
18(B( 12 ,

1
2 )− 0.5).

F(x) = 1/(1 + exp(−x)), X2,n = (x1,n, . . . , xn,n)′ ∼ 1.5(In − 0.2Wn)
−1N(0, In), λ0 = 1, β0 = (−1, 1)′ .

IV: useWnX2,n as the IVs ofWnSn . 2SLS: useWnX2,n and W 2
n X2,n as the IV of WnSn . Repetition: 1000.
Table 6
Compare F is logistic and standard normal distributions.

True F Logit Normal
Estimate with Logit Normal Logit Normal Logit Normal Logit Normal

2SLS MLE 2SLS MLE

λ
0.9536 0.5391 0.9546 0.6167 2.0612 0.9619 0.6985 0.9675
(0.5818) (0.3305) (0.3339) (0.1936) (1.0499) (0.4654) (0.5493) (0.2553)

β1
−0.9821 −0.5603 −0.9820 −0.5906 −2.0640 −0.9867 −1.5701 −0.9882
(0.2339) (0.1327) (0.1407) (0.0814) (0.3971) (0.1747) (0.2177) (0.1040)

β2
1.0012 0.5706 1.0023 0.5677 2.1124 1.0013 2.1941 1.0022
(0.0497) (0.0275) (0.0452) (0.0247) (0.1255) (0.0498) (0.1248) (0.0450)

True F Laplace Cauchy

λ
1.2194 0.6691 1.5876 0.9544 0.7528 0.4456 1.0785 0.6241
(0.6455) (0.3617) (0.3678) (0.2096) (0.5239) (0.3144) (0.3098) (0.1859)

β1
−1.2668 −0.7017 −1.4035 −0.8078 −0.7998 −0.4750 −0.9298 −0.5462
(0.2476) (0.1384) (0.1499) (0.0850) (0.2126) (0.1275) (0.1305) (0.0783)

β2
1.2835 0.7091 1.2654 0.6947 0.8136 0.4830 0.8007 0.4760
(0.0618) (0.0340) (0.0552) (0.0302) (0.0391) (0.0234) (0.0348) (0.0209)

X2,n = (x1,n, . . . , xn,n)′ ∼ (In − 0.2Wn)
−1N(0, In), ϵi iid ∼ N(0, 1), (λ0, β10, β20) = (1,−1, 1).

2SLS: use WnX2,n andW 2
n X2,n as the IV ofWnSn . Sample size: 500. Repetition: 1000.
Laplace F(x) = 1(x < 0)ex/2 + 1(x > 0)(1 − e−x/2), and Cauchy
F(x) =

1
2 +

1
π
arctan x. All these transformations are nonlinear and

thus the estimates of coefficients in Table 6would be different from
the true ones. Instead of comparing estimated coefficients across
model specifications with various transformations, it may bemore
appropriate to compare implied marginal effects.

Figs. 1–4 illustrate differences in the implied marginal effects
based on estimatedmodels with those derived from the exact ones
(with true coefficients). When the true F(·) is either the logit or
normal distribution function, the marginal effects are not far away
from each other regardless of whether the specified transforma-
tion used is F(x) = (1+ e−x)−1 or F(x) = Φ(x). But if the true F(·)
is the Laplace distribution, then Φ(x) gives much worse marginal
effects than those from the logit (1+ e−x)−1. This can be explained
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Fig. 3. Self marginal effects when true F(·) is the Laplace distribution function.
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Fig. 5. Prediction when F(x) = 1/(1 + e−x).

by the tail behavior of these distributions: the tails of Laplace dis-
tribution and logit are similar while Φ(x) has much thinner tails.
When F(·) is the Cauchy distribution, the marginal effects from
both F(x) = (1 + e−x)−1 and F(x) = Φ(x) are imprecise, even
though F(x) = (1+e−x)−1 gives slightly better estimation. Perhaps
that is because Cauchy has much fatter tails than the logit distri-
bution, while the tails of the normal distribution are the thinnest.
Figs. 1–4 are generated from MLE. 2SLS estimation, different sam-
ple sizes and parameters have been tried in the experiment, and
the corresponding figures are very similar.11

5.3. Testing functional forms

In this section, we conduct some Monte Carlo experiments on
the finite sample performance of testing the specified F(·) trans-
formation as suggested by the end of Section 4. In the experiment,
si,n = F(λwi.,nSn+β1+β2x2i,n+β3x3i,n+ϵi,n) has true parameters
(λ0, β10, β20, β30) = (1,−1, 0.5, 0.5) and ϵi,n is i.i.d. N(0, 0.72).
The designs of the regressors x2i,n and x3i,n are described under
Table 7. Both the sample size and the number of bootstrapping
repetitions are 500, and the Monte Carlo repetition is 1000. The
true parameters are chosen such that there are few computational
problems such as ill-conditioned matrices. We obtain the critical
value (one-sided test) of the 5% level of significance. From Table 7,
we see that the frequencies of Type I errors are between 5.2% and
6.8%, which are close to the 5% errors. However, from Table 8, the
powers for most tests are not large. This is especially true for dis-
tributions that have certain similarities, e.g., the power of testing

11 Those additional results are presented in the supplement file (see Appendix C).
Table 7
Size of test between different transformations.

H1

Cauchy Laplace Logit Normal Extreme

H0
Logit 6.3% 6% – 5.2% 5.6%
Normal 5.2% 5.9% 6.8% – 5.3%

X2,n = (x21,n, . . . , x2n,n)′ ∼ 1.5(In − 0.2Wn)
−1N(0, In), X3,n = (x31,n, . . . , x3n,n)′ ∼

N(0, In),
ϵi iid ∼ N(0, 0.72), (λ0, β10, β20, β30) = (1,−1, 0.5, 0.5).
UseWnX2,n , WnX3,n ,W 2

n X2,n andW 2
n X3,n as IV.

Bootstrap: 500 times. Sample size: 500. Repetition: 1000.

Table 8
Power of test between different transformations.

H1

Cauchy Laplace Logit Normal Extreme

H0
Logit 48.5% 12.1% – 5.5% 63.3%
Normal 57.6% 23.8% 9.7% – 41.6%

X2,n = (x21,n, . . . , x2n,n)′ ∼ 1.5(In − 0.2Wn)
−1N(0, In), X3,n = (x31,n, . . . , x3n,n)′ ∼

N(0, In),
ϵi iid ∼ N(0, 0.72), (λ0, β10, β20, β30) = (1,−1, 0.5, 0.5).
UseWnX2,n , WnX3,n ,W 2

n X2,n andW 2
n X3,n as IV.

Bootstrap: 500 times. Sample size: 500. Repetition: 1000.

logit F(·) vs normal F(·) is 5.5% and the power of testing normal
vs logit is 11.7%. Laplace F(·) and logit F(·) also have similar be-
haviors, and the power of testing logit vs Laplace transformation
is 12.1%. If two distributions are quite different, then the powers
are large. For example, Cauchy F(·) has fat tails but normal F(·) has
thin tails, and the power of testing logit vs the Cauchy transfor-
mation is 57.6%. We have also examined the relationship between
powers and variances of xi,nβ0 + ϵi,n. From Table 9, we see that as
we raise the variance of xi,nβ0 + ϵi,n, powers increase for all test
except testing logit against Laplace. These phenomena can be ex-
plained by the tail behaviors of these distributions: the tails of logit
and Laplace distributions are the same, except the scaling factor 2;
but the tails of other pairs are of different thickness.When the vari-
ance of xi,nβ0 + ϵi,n increases, more data are located at the tails of
these distributions, then it will be easier to differentiate two F(·)’s
if their tails aremore different and it is harder to differentiate them
if their tails are similar.

6. Conclusion

In this paper, we consider a generalization of the linear SAR
model to a nonlinear onewith a strictly increasing nonlinear trans-
formation function. After establishing the NED property of the de-
pendent variable and relevant functions, we show the consistency
and asymptotic normality of the ML estimators with normally dis-
tributed errors. To consider the case where the distribution of er-
rors is unknown, we also consider IV and 2SLS estimation. Monte
Carlo experiments verify our theoretical results in finite samples.
The experiments also show that MLE is more efficient relative to
the 2SLS estimation.

Our models can be extended in several ways. First, we have not
consideredheteroskedasticity in ourmodel. As theMLE is generally
not consistent for the estimation of the linear SAR model with
unknown heteroskedasticity (see Lin and Lee, 2010), we expect
that the MLE for a nonlinear SAR would also be inconsistent, if
unknown heteroskedasticity were ignored. Thus, it would be of
interest to study the nonlinear SARmodel with heteroskedasticity.
Second, it would also be interesting to generalize our model to
panel data. Many results have been obtained for the estimation of
linear spatial panel datamodels (see, e.g. Lee and Yu, 2010), but the
research on nonlinear spatial panel models needs to be developed.
Third, our model depends crucially on the Lipschitz property of
F(·), which givesNEDproperty of the dependent variable and other



12 X. Xu, L.-f. Lee / Journal of Econometrics 186 (2015) 1–18
Table 9
Power of test.

β20 β30 σ0 H0 H1 H0 H1 H0 H1 H0 H1 H0 H1

Normal Logit Normal Laplace Logit Cauchy Normal Cauchy Logit Laplace

0.5 0.5 0.7 9.7% 23.8% 48.5% 57.6% 12.1%
0.7 0.7 0.9 11.7% 28.1% 56.1% 64.9% 12%
1 1 1 16.7% 33.2% 66.9% 74.5% 11.4%
1.5 1.5 1.5 21.5% 38.2% 75.3% 81.6% 10.4%

The first row of values duplicates some results in Table 8 for easier comparison.
X2,n = (x21,n, . . . , x2n,n)′ ∼ 1.5(In − 0.2Wn)

−1N(0, In), X3,n = (x31,n, . . . , x3n,n)′ ∼ N(0, In),
ϵi iid ∼ N(0, σ 2

0 ), (λ0, β10) = (1,−1).
UseWnX2,n ,WnX3,n ,W 2

n X2,n andW 2
n X3,n as IV.

Bootstrap: 500 times. Sample size: 500. Repetition: 1000.
variables. However, some nonlinear transformation functions in
certain models, such as step functions for binary choice models, do
not satisfy the Lipschitz property. More work needs to be done in
this area. Finally, in empirical applications, we may not know the
functional form of F(·). Thus it would be useful to generalize the
model to a semiparametric one.
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Appendix A. Some useful lemmas

Lemma A.1 (A Direct Generalization of Corollary 4.3(b), Gallant and
White, 1988). If for all i and n, ∥Yi,n∥2r 6 ∆ < ∞ and ∥Zi,n∥2r 6
∆ < ∞ for some r > 2, ∥Yi,n − E[Yi,n|Fi,n(s)]∥2 6 di,Ynρs

and ∥Zi,n − E[Zi,n|Fi,n(s)]∥2 6 di,Znρs, then ∥Yi,nZi,n − E[Yi,nZi,n|Fi,n
(s)]∥2 6 di,nρ̃s where di,n = 2(3r−2)/(r−1)(di,Zn + di,Yn)(r−2)/(2r−2)

∆(3r−2)/(2r−2) and ρ̃ = ρ(r−2)/(2r−2). Specifically, if {Yi,n} and {Zi,n}
are both uniformly L2r bounded and uniformly and geometrically L2-
NED, then {Yi,nZi,n} is still uniformly and geometrically L2-NED.

The proof of the above lemma is almost the same as that of
Corollary 4.3(b) in Gallant and White (1988), thus we omit it here.

Lemma A.2. If {Xi,1n}, . . . , {Xi,kn} are kLp-NED random fields on
{ϵi,n}

n
i=1, for each i, define Z i,n arbitrarily as one among {Xi,1n, . . . ,

Xi,kn}, then {Z i,n}
n
i=1 is also Lp-NED.

Proof. Because ∥Xi,jn − E(Xi,jn|Fi,n(m))∥p 6 di,jnψj(m), we have
∥Zi,n − E(Zi,n|Fi,n(m))∥p 6 maxj di,jn maxj ψj(m). �

Lemma A.3. If {Xi,1n}, . . . , {Xi,kn} are k L2-NED random fields on
{ϵi,n} such that ∥Xi,jn − E[Xi,jn|Fi,n(m)]∥ 6 di,jnψ(m), then {Zi,n ≡
X2
i,1n + · · · + X2

i,kn} is L2-NED such that ∥Zi,n − E[Zi,n|Fi,n(m)]∥ 6

(


j di,jn)ψ(m). If {Xi,1n}, . . . , {Xi,kn} are k uniformly and geometri-
cally L2-NED random fields, then {Zi,n} is also a uniformly and geo-
metrically L2-NED random field.

Proof. The Euclidean distance function ∥(x1, . . . , xk)∥ =
x21 + · · · + x2k is a Lipschitz function because:

 ∂∥(x1,...,xk)∥∂xi

 = xi√
x21+···+x2K

 6 1. Then the conclusion comes from Theorem 17.12

in Davidson (1994). �

Appendix B. Proofs

B.1. The proof for Section 2

Proof of Proposition 1. Denote the right hand side of Eq. (2) as
Hn(Sn). First we will show that Hn : Rn

→ Rn is a contraction
mapping. Because

∂Hn(Sn)
∂S ′

=

λf (λw1·,nSn + x1,nβ + ϵ1)w1·,n
...

λf (λwn·,nSn + xn,nβ + ϵn)wn·,n

 ,
it follows that ∥∂Hn(S)/∂S ′

∥∞ 6 |λ| supi=1,...,n f (λwi.,nSn +xi,nβ+

ϵi,n)∥Wn∥∞ 6 |λ|bf ∥Wn∥∞ 6 ζ < 1, where ∥ · ∥∞ represents
the infinite vector norm. By the mean value theorem, we have
Hj,n(S1) − Hj,n(S2) =

∂Hj,n(S̄j)
∂S′ (S1 − S2) where S̄j lies between S1

and S2. Therefore, ∥Hn(S1)− Hn(S2)∥∞ 6 ζ∥S1 − S2∥∞, i.e., Hn is a
contraction mapping. Since Rn is a complete metric space, there is
exactly one fixed point for the contraction mapping Hn. �

Proof of Lemma 1. First, we consider the solution of the system
of equations: S0n = F(λ0WnS0n). By mean value theorem, S0n =

F(0)ιn + λ0fDnWnS0n , where ιn = (1, . . . , 1)′ and fDn is a diagonal
matrix with its jth diagonal element f (tj) for some tj between 0
and λ0wj·,nS0n . Then S0n = F(0)(In − λ0fDnWn)

−1ιn. Because ∥(In −

λ0bfWn)
−1

∥∞ = ∥


∞

i=0(λ0bfWn)
i
∥∞ 6 1/(1 − ζ ), we have

|s0i,n| 6 |F(0)|/(1 − ζ ).
Second, we consider the equation Sn = F(λ0WnSn + ηn). Then

dSn = (In − λ0fDnWn)
−1fDndηn. As elements ofWn and fDn are non-

negative, (In − λ0fDnWn)
−1fDn 6∗ Mn = (mij,n) ≡ bf (In − |λ0|bf

Wn)
−1, where 6∗ means the inequality applied to the absolute

value of pointwise entries of the twomatrices. Thus Sn is a Lipschitz
function of ηn. Apply this conclusion to Sn = F(λ0WnSn+Xnβ0+ϵn)

and denote its solution as Sn(ϵn). Then Sn(0) is the solution of
Sn = F(λ0WnSn + Xnβ0). Because ∥Mn∥∞ 6 bf /(1 − ζ ), we have
|si,n(0)| 6 |s0i,n| + ∥Mn∥∞|xi,nβ0| 6 (|F(0)| + bf |xi,nβ0|)/(1 − ζ ).

Third,
n

j=1 E|ϵj,n|
lj =

n
j=1 ∥ϵj,n∥

lj
lj

6
n

j=1 ∥ϵj,n∥
lj
l1+···+ln =

E|ϵj,n|l1+···+ln by Lyapunov’s inequality. Then, with themultinomial
theorem (Sheldon, 2009), we have

E


n

j=1

|mij,nϵj,n|

p

= E


l1+···+ln=p

p!
l1! · · · ln!

n
j=1

|mij,nϵj,n|
lj

=


l1+···+ln=p

p!
l1! · · · ln!

n
j=1

|mij,n|
ljE|ϵj,n|lj

6


l1+···+ln=p

p!
l1! · · · ln!

n
j=1

|mij,n|
ljE|ϵ1,n|l1+···+ln

= E|ϵ1,n|p


n
j=1

|mij,n|

p

6 bpf E|ϵ1,n|
p/(1 − ζ )p.



X. Xu, L.-f. Lee / Journal of Econometrics 186 (2015) 1–18 13
Finally, because |si,n(ϵn) − si,n(0)| 6
n

j=1 |mij,nϵj,n|, it follows
by the Cr -inequality (Shorack, 2000, p. 47) that

E[|si,n(ϵn)|p|Xn]

6 E


|si,n(0)| +

n
j=1

|mij,nϵj,n|

p

|Xn



6 2p−1


E(|si,n(0)|p|Xn)+ E


n

j=1

|mij,nϵj,n|

p
6 2p−1

[(|F(0)| + bf |xi,nβ0|)
p
+ bpf E|ϵ1,n|

p
]/(1 − ζ )p.

Then it is clear that supi,n E[|si,n(ϵn)|p] = supi,n E{E[|si,n(ϵn)|p|Xn]}

< ∞ since supi,k,n ∥xik,n∥p < ∞. �

Proof of Proposition 2. Denote S(1)n = F(λ0WnS
(1)
n +X (1)n β0+ϵ

(1)
n )

and S(2)n = F(λ0WnS
(2)
n +X (1)n β0+ϵ

(2)
n ). From the proof of Lemma 1,

we have |s(1)i,n − s(2)i,n | 6
n

j=1 mij,n|(x
(1)
j,n − x(2)j,n )β0 + (ϵ

(1)
j,n − ϵ

(2)
j,n )|,

where (mij,n) ≡ bf (In − |λ|bfWn)
−1. Then, ∥si,n − E(si,n|Fi,n

(md0))∥2 6 ∥si,n − E(si,n|xj,nβ0 + ϵj, d(j, i) 6 md0)∥2 6 (σ0 +

∥β0∥1 supi,k,n ∥xik,n∥2)


j:d(j,i)>md0
mij,n, where the second in-

equality comes from Proposition 1 in Jenish and Prucha (2012) and
Minkowski’s inequality. Under Assumption 2, we know (W l

n)ij = 0
if d(i, j) > md0 while l 6 m. Hence, the conclusion follows from
j:d(j,i)>md0

mij,n = bf


j:d(j,i)>md0

(In − |λ|bfWn)
−1
ij

= bf


j:d(j,i)>md0

∞
l=0

(|λ|bfWn)
l
ij

= bf


j:d(j,i)>md0

∞
l=m+1

(|λ|bfWn)
l
ij

= bf
∞

l=m+1


j:d(j,i)>md0

(|λ|bfWn)
l
ij

6 bf
∞

l=m+1

∥λbfWn∥
l
∞

6 bf ζm+1/(1 − ζ ). �

Proof of Corollary 1. Because si,n is uniformly Lp bounded andWn
is uniformly bounded in row sums, {wi·,nSn}ni=1 is uniformly Lp
bounded. Noticewij,n ≠ 0 only if d(i, j) 6 d0. Then

∥wi·,nSn − E(wi·,nSn|Fi,n(md0))∥2

=

 n
j=1

wij,n[sj,n − E(sj,n|Fi,n(md0))]


2

6

n
j=1

wij,n∥sj,n − E[sj,n|Fj,n((m − 1)d0)]∥2

6 (σ0 + ∥β0∥1 sup
i,k,n

∥xik,n∥2)
σ0ζ

m+1

λm(1 − ζ )
,

where the second inequality comes from Proposition 2. �

B.2. Proofs for Section 3

Proof of Lemma 2. Weknow that ln x 6 x−1 for any x > 0, which
means ln

√
x 6

√
x − 1. Therefore, ln x 6 2(

√
x − 1) for any x > 0.

So we have

E ln[Ln(θ)/Ln(θ0)] 6 2E


Ln(θ)/Ln(θ0)− 1


= 2
 

Ln(θ)/Ln(θ0)− 1

Ln(θ0)dSn
= 2
 

Ln(θ)Ln(θ0)dSn − 1


= −

 
Ln(θ)−


Ln(θ0)

2
dSn 6 0. (15)

This implies in particular the information inequality that E ln Ln(θ)
6 E ln Ln(θ0) for all θ . Thus θ0 is a maximizer. Eq. (15) also implies
that if E ln Ln(θ) = E ln Ln(θ0), Ln(θ) = Ln(θ0) almost surely (see,
e.g., Van der Vaart, 1998)We claim that θ0 is the uniquemaximizer
as follows. Because E ln Ln(θ) = E ln Ln(θ0) implies Ln(θ) = Ln(θ0)
almost surely, we analyze the equation ln Ln(θ) − ln Ln(θ0) = 0
with variable Tn while Xn and parameters are fixed. For any square
matrix A, denote ρ(A) the spectral radius of A. From spectral radius
theorem, we have ρ(W ′

nWn) 6 ∥W ′
nWn∥∞ 6 ∥Wn∥∞∥W ′

n∥∞ 6 C2

for some C > 0. Thus C2In−W ′
nWn is positive semi-definite. Hence

by Cauchy’s inequality,

lim
inf
i

|ti,n|→∞

|T ′
nWnF(Tn)|
T ′
nTn

6 lim
inf
i

|ti,n|→∞

(T ′
nTn)

1/2
[F(Tn)′W ′

nWnF(Tn)]1/2

T ′
nTn

6 C lim
inf
i

|ti,n|→∞

(T ′

nTn)
−1/2

[F(Tn)′F(Tn)]1/2

= C lim
inf
i

|ti,n|→∞


n

i=1

F 2(ti,n)/
n

i=1

t2i,n

1/2

6 C lim
inf
i

|ti,n|→∞

[ max
i=1,...,n

F 2(ti,n)/t2i,n]
1/2

= 0,

where the last equation follows from limx→+∞ F(x)/x = 0. App-
lying Cauchy’s inequality again, we have lim supT ′

nTn→∞ |T ′
nXnβ0|/

(T ′
nTn) 6 limT ′

nTn→∞(T ′
nTn)

−1/2(β0X ′
nXnβ0)

1/2
= 0. For any λ ∈ Λ,

ρ(λfDnWn) 6 ∥λfDnWn∥∞ = ζ . Denote the characteristic values
of fDnWn as λi’s. Because λi ∈ R, we obtain 1 − ζ 6 1 − λλi 6
1 + ζ and ln |In − λfDnWn| = ln

n
i=1(1 − λλi) ∈ [n ln(1 − ζ ),

n ln(1 + ζ )]. By liminfi |ti,n|→∞ T ′
nWnF(Tn)/(T ′

nTn) = 0, limT ′
nTn→∞

|T ′
nXnβ0|/(T ′

nTn) = 0 and ln |In − λfDnWn| ∈ [n ln(1 − ζ ), n ln(1 +

ζ )], we have σ0 = σ because

0 = lim
inf
i

|ti,n|→∞

[ln Ln(θ)− ln Ln(θ0)]/(T ′

nTn)

= lim
inf
i

|ti,n|→∞

×


−

[Tn − λWnF(Tn)− Xnβ]
′
[Tn − λWnF(Tn)− Xnβ]

2σ 2T ′
nTn

+
[Tn − λ0WnF(Tn)− Xnβ0]

′
[Tn − λ0WnF(Tn)− Xnβ0]

2σ 2
0 T ′

nTn

+
ln |In − λfDnWn| − ln |In − λ0fDnWn|

T ′
nTn


= (σ−2

0 − σ−2)/2.

Because F−1(Sn)−λWnSn−Xnβ = ϵn+(λ0−λ)WnSn+Xn(β0−

β) = ϵn + (λ0 −λ)Wn(Sn − ESn)+[(λ0 −λ)WnESn + Xn(β0 −β)],
we have

E[(F−1(Sn)− λWnSn − Xnβ)
′

× (F−1(Sn)− λWnSn − Xnβ)]

= nσ 2
0 + (λ0 − λ)2E[(Wn(Sn − ESn))′
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× (Wn(Sn − ESn))] + 2(λ0 − λ)E(ϵ′WnSn)

+ E{[(λ0 − λ)WnESn + Xn(β0 − β)]′

× [(λ0 − λ)WnESn + Xn(β0 − β)]}

= (λ0 − λ)2E[(Wn(Sn − ESn))′(Wn(Sn − ESn))]

+ 2σ 2
0 Etr[(λ0 − λ)(fDn − λ0Wn)

−1Wn]

+ nσ 2
0 + E{[(λ0 − λ)WnESn + Xn(β0 − β)]′

× [(λ0 − λ)WnESn + Xn(β0 − β)]},

where the last step is from the first order condition E(ϵ′
nWnSn) =

σ 2
0 E[(f

−1
Dn

− λ0Wn)
−1Wn]. Because (f −1

Dn
− λ0Wn)

−1(f −1
Dn

− λWn) =

In + (λ0 − λ)(f −1
Dn

− λ0Wn)
−1Wn, we have

E ln Ln(θ)− E ln Ln(θ0) =


n
2
ln
σ 2
0

σ 2
−

nσ 2
0

2σ 2
+

n
2


+ E ln |In + (λ0 − λ)(f −1

Dn − λ0Wn)
−1Wn|

−
σ 2
0

σ 2
Etr[(λ0 − λ)(f −1

Dn
− λ0Wn)

−1Wn]

−
(λ0 − λ)2

2σ 2
E[(Wn(Sn − ESn))′(Wn(Sn − ESn))]

−
1

2σ 2
E{[(λ0 − λ)WnESn + Xn(β0 − β)]′

× [(λ0 − λ)WnESn + Xn(β0 − β)]}

=
n
2


σ 2
0

σ 2
− ln

σ 2
0

σ 2
− 1


+ E


ln
σ 2

0

σ 2


In + (λ0 − λ)(f −1

Dn
− λ0Wn)

−1Wn


− tr
σ 2
0

σ 2
[In + (λ0 − λ)(f −1

Dn
− λ0Wn)

−1Wn] + n


−
(λ0 − λ)2

2σ 2
E[(Wn(Sn − ESn))′(Wn(Sn − ESn))]

−
1

2σ 2
E{[(λ0 − λ)WnESn + Xn(β0 − β)]′

× [(λ0 − λ)WnESn + Xn(β0 − β)]}. (16)

Because In + (λ0 − λ)(f −1
Dn

− λ0Wn)
−1Wn = (In − λ0fDnWn)

−1(In −

λfDnWn), the characteristic values of In+(λ0−λ)(f −1
Dn

−λ0Wn)
−1Wn

is 1−λλi
1−λ0λi

. For any λ, |λλi| 6 |λ|bf ∥Wn∥∞ < 1. Therefore, 1 −

|λ|bf ∥Wn∥∞ 6 1 − λλi 6 1 + |λ|bf ∥Wn∥∞. Thus, the ratio 1−λλi
1−λ0λi

is bounded from above and bounded away from zero as

0 <
1 − |λ|bf ∥Wn∥∞

1 + |λ0|bf ∥Wn∥∞

6
1 − λλi

1 − λ0λi

6
1 + |λ|bf ∥Wn∥∞

1 − |λ0|bf ∥Wn∥∞

< ∞. (17)

When the characteristic values of an n×nmatrix A are all positive,
then ln |A| 6 tr(A) − n with equality only when all characteristic
values are 1. As all the characteristic values of fDnWn are real, Eq.

(17) implies that all characteristic values of σ
2
0
σ 2 [In + (λ0 −λ)(f −1

Dn
−

λ0Wn)
−1Wn] =

σ 2
0
σ 2 (f

−1
Dn

− λ0Wn)
−1(f −1

Dn
− λWn) are positive. Then
as σ 2
= σ 2

0 , E ln Ln(θ) = E ln Ln(θ0) must imply that λ = λ0 and
β = β0. �

Proof of Lemma 3. From the proof of Lemma 2, we know that if
E ln Ln(θ) = E ln Ln(θ0), we have Ln(θ) = Ln(θ0) almost surely, i.e.,

−
n
2
ln σ 2

−
[Tn − λWnF(Tn)− Xnβ]

′
[Tn − λWnF(Tn)− Xnβ]

2σ 2

+ ln |In − λfDnWn|

= −
n
2
ln σ 2

0

−
[Tn − λ0WnF(Tn)− Xnβ0]

′
[Tn − λ0WnF(Tn)− Xnβ0]

2σ 2
0

+ ln |In − λ0fDnWn|

(18)

holds for Tn almost surely.
Differentiate Eq. (18) with respect to tk,n, we have

σ−2


tk,n − λwk·,nF(Tn)− xk,nβ − λf (tk,n)

×

n
i=1

(ti,n − λwi·,nF(Tn)− xi,nβ)wik,n


− λf ′(tk,n)tr[(In − λfDnwn)

−1wk·,n]

= σ−2
0


tk,n − λ0wk·,nF(Tn)− xk,nβ0 − λ0f (tk,n)

×

n
i=1

(ti,n − λ0wi·,nF(Tn)− xi,nβ0)wik,n


− λ0f ′(tk,n)tr[(In − λ0fDnWn)

−1wk·,n], (19)

wherewk·,n is an n×nmatrixwhose entries are zero except that its
kth row is identical to the kth row ofWn. Differentiating the above
equation with respect to tj,n, j ≠ k, we get

σ−2


− λwkj,nf (tj,n)− λwjkf (tk,n)

+ λ2f (tk,n)f (tj,n)
n

i=1

wij,nwik,n


− λ2f ′(tk,n)f ′(tj,n)tr[(In − λfDnWn)

−1

×wj·,n(In − λfDnWn)
−1wk·,n]

= σ−2
0


− λ0wkj,nf (tj)− λ0wjk,nf (tk,n)

+ λ20f (tk,n)f (tj,n)
n

i=1

wij,nwik,n


− λ20f

′(tk,n)f ′(tj,n)tr[(In − λ0fDnWn)
−1

×wj·,n(In − λ0fDnWn)
−1wk·,n].

Let tj,n be such that f ′(tj,n) = 0 and f (tj,n) ≠ 0 (tj,n may be +∞

or −∞). Then the above equation implies

σ−2


− λwkj,nf (tj,n)− λwjk,nf (tk,n)

+ λ2f (tk,n)f (tj,n)
n

i=1

wij,nwik,n


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= σ−2
0


−λ0wkj,nf (tj)− λ0wjk,nf (tk,n)

+ λ20f (tk,n)f (tj,n)
n

i=1

wij,nwik,n


. (20)

First, consider the case F(·) is not a linear function, i.e., f (·) is
not a constant. Notice that both sides of the above equation are
linear equations of f (tk,n), so their constant terms are the same:
λwkj,nf (tj,n)/σ 2

= λ0wkj,nf (tj,n)/σ 2
0 . Because Wn ≠ 0 while its

diagonal elements are all 0, there exist k and j such thatwkj,n ≠ 0.
As f (tj) ≠ 0, thus λ/σ 2

= λ0/σ
2
0 . Then Eq. (20) implies

λ2f (tk,n)f (tj,n)
n

i=1

wij,nwik,n/σ
2

= λ20f (tk,n)f (tj,n)
n

i=1

wij,nwik,n/σ
2
0 .

Therefore, λ2
n

i=1wij,nwik,n/σ
2

= λ20
n

i=1wij,nwik,n/σ
2
0 . Sum-

mation over k and j, we have λ2


j≠k(W
′
nWn)jk/σ

2
= λ20


j≠k

(W ′
nWn)jk/σ

2
0 . As W

′
nWn is not a diagonal matrix, λ2/σ 2

= λ20/σ
2
0 .

Combining λ/σ 2
= λ0/σ

2
0 , we obtain λ = λ0 and σ = σ0.

Second, consider the case that F(·) is a linear function. Without
loss of generality, assume F(x) ≡ x. Then f (x) ≡ 1 and Eq. (19) can
be written as

σ−2
[Tn − λWnTn − Xnβ]

′(In − λWn)

= σ−2
0 [Tn − λ0WnTn − Xnβ]

′(In − λ0Wn).

Notice that both sides are linear equations of Tn, thus their ‘‘slopes’’
are the same: σ−2(In − λWn)

′(In − λWn) = σ−2
0 (In − λ0Wn)

′(In −

λ0Wn). Therefore,

(λ2σ−2
− λ20σ

−2
0 )W ′

nWn − (λσ−2
− λ0σ

−2
0 )

× (W ′

n + Wn)+ (σ−2
− σ−2

0 )In = 0. (21)

Consider the diagonal elements: (λ2σ−2
− λ20σ

−2
0 )(W ′

nWn)ii +

(σ−2
− σ−2

0 ) = 0 for all i. Since (W ′
nWn)ii’s are not all the same,

we have λ2σ−2
= λ20σ

−2
0 and σ−2

= σ−2
0 . Now consider the off-

diagonal elements of (λσ−2
− λ0σ

−2
0 )(W ′

n + Wn) = 0. Because
Wn ≠ 0 and its elements are non-negative, we obtain λσ−2

=

λ0σ
−2
0 . Hence, we can identify λ0 and σ0 when F(x) ≡ x.
Hence, Eq. (16) implies E ln Ln(θ)− E ln Ln(θ0) = −

1
2σ 2

0
E[(β0 −

β)′X ′
nXn(β0 − β)] = 0, which can hold only if β0 = β . �

Proof of Proposition 3. (i) From the discussion after Corollary 1,
ti,n

is uniformly and geometrically L2-NED with ψ(md0) = ζm.

Because f (x) is a Lipschitz function, we have that fi = f (ti) is also
uniformly and geometrically L2-NED: ∥fi−E(fi|Fi,n(md0))∥2 6 Cζm

for some constant C > 0. Denote i0 = i. Then with the inequality
|x0x1 · · · xl −y0y1 · · · yl| 6 blf

l
i=1 |xi −yi|when all xi’s and yi’s are

in [−bf , bf ], we have

∥fifi1 fi2 · · · fil − E[fifi1 fi2 · · · fil |Fi,n(md0)]∥2

6

 l
j=0

fij −
l

j=0

E[fij |Fi,n(md0)]


2

6 blf
l

j=0

∥fij − E[fij |Fi,n(md0)]∥2

6 blf
l

j=0

∥fij − E[fij |Fij,n((m − j)d0)]∥2
6 blf C(ζ
m

+ ζm−1
+ · · · + ζm−l)

= blf
C(ζ−1−l

− 1)
ζ−1 − 1

ζm. (22)

(ii) For any given small positive number ϵ > 0, we can divide
the summation in Eq. (7) into two parts (l 6 K0 & l > K0), where
the fixed natural numberK0 will be determined later.Wewill show
that the first part converges to zero uniformly and the second part
can be bounded by ϵ/2.

To show the convergence of the first part, we only need to
calculate its variance. By Lemma A.2 and Eq. (22), we know that
for any location i, arbitrarily pick a natural number l 6 K0 and
locations j1, j2, . . . , jl−1 such that d(i, j1) 6 d0 and d(jh, jh−1) 6 d0
for all 2 6 h 6 l, then {fifj1 · · · fjl−1} are L2-NED: ∥fifj1 · · · fjl−1 −

E[fifj1 · · · fjl−1 |Fi,n(md0)]∥2 6 bK0f
C(ζ−1−K0−1)

ζ−1−1
ζm for some constant

C > 0.12 So by Lemma A.3 in Jenish and Prucha (2012), if locations
i′ → j′1 → j′2 → · · · j′l−1 also satisfy that d(i′, j′1) 6 d0 and
d(j′h, j

′

h−1) 6 d0 for all 2 6 h 6 l, then there exists a constant
C2 > 0 s.t . |cov(fifj1 · · · fjl−1 , f i′ f j′1 · · · f j′l−1

)| 6 C2ζ
d(i,i′)/3.

Denote gnl =
n

i=1


j1
· · ·


jl−1
wij1,nwj1j2,n · · ·wjl−1 i,n

(fifj1 · · · fjl−1 − Efifj1 · · · fjl−1). Then we have

Var

1
n
gnl


6

1
n2

n
i=1

n
i′=1


j1


j2

· · ·


jl−1


j′1


j′2

· · ·


j′l−1

wij1,nwj1j2,n · · ·

×wjl−1 i,nwi′j′1,n
wj′1j

′
2,n

· · ·

×wj′l−1 i
′,n|cov(fifj1 · · · fjl−1 , f i′ f j′1 · · · f j′l−1

)|

6
1
n2

n
i=1

n
i′=1

C2ζ
d(i,i′)/3


j1

· · ·


jl−1


j′1

· · ·

×


j′l−1

wij1,n · · ·wjl−1 i,nwi′j′1,n
· · ·wj′l−1 i

′,n

6
1
n2

∥Wn∥
2l
∞

n
i=1

n
i′=1

C2ζ
d(i,i′)/3.

Define Ni(1, 1,m) = {j : (m − 1)d0 6 d(i, j) 6 md0}. Be-
cause all the positions are in Rd, there exists a constant C3 such
that |Ni(1, 1,m)| 6 C3md−1 from Jenish and Prucha (2009). Thenn

i=1
n

i′=1 C2ζ
d(i,i′)/3 6

n
i=1


∞

m=1 C3md−1C2ζ
(m−1)d0/3 = O(n)

as


∞

m=1 C3md−1C2ζ
(m−1)/3 < ∞. This shows that 1

ngnl(λ) = op(1).
The uniform convergence supλ∈Λ |

1
n

K0
l=1 gnlλ

l/l| = op(1) holds
because λ appears as a polynomial.

Nowwe consider the proof of the remaining part where l > K0.1
n

∞
l=K0+1

gnl(λ)


6
1
n

∞
l=K0+1

λl

l

n
i=1


j1

· · ·


jl−1

wij1,nwj1j2,n · · ·

×wjl−1 i,n|fifj1 · · · fjl−1 − Efifj1 · · · fjl−1 |

6
2
n

∞
l=K0+1

∥λWn∥
l
∞

l
blf 6 2

∞
l=K0+1

ζ l

l

12 Here without loss of generality, we assume bf ≥ 1.
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6
2
K0

∞
l=K0+1

ζ l
=

2
K0

ζ K0+1

1 − ζ
<
ϵ

2

so long as K0 > Kϵ for some positive integer Kϵ with
2ζ Kϵ+1K−1

ϵ /(1 − ζ ) < ϵ/2. Notice that Kϵ does not depend on the
sample size n. Then

P

sup
λ∈Λ

1
n
ln |In − λfDnWn| − E ln |In − λfDnWn|

 > ϵ


= P


sup
λ∈Λ

1
n

 K0
l=1

gnl(λ)+

∞
l=K0+1

gnl(λ)
 > ϵ



6 P


sup
λ∈Λ

1
n

 K0
l=1

gnl(λ)
+ sup

λ∈Λ

1
n

 ∞
l=K0+1

gnl(λ)
 > ϵ



6 P


sup
λ∈Λ

1
n

 K0
l=1

gnl(λ)
 > ϵ/2


→ 0,

as n → ∞. �

Proof of Theorem 1. Because ln |f −1
Dn

−λWn| = ln |In −λfDnWn|−

ln |fDn |, it causes no harm to drop the term ln |fDn |, which does not
involve parameters, in the analysis of consistency of an extremum
estimator. Then ln Ln(θ) = −

n
2 ln(2πσ 2) −

1
2σ 2 [F−1(Sn) −

λWnSn − Xnβ]
′
[F−1(Sn) − λWnSn − Xnβ] + ln |In − λfDnWn|. In

order to establish the consistency of the ML estimator, with the
identification condition in Assumption 9, it remains to show the
uniform convergence 1

n [supθ∈Θ | ln Ln(θ) − Qn(θ)|]
p
−→ 0, and the

equicontinuity of 1
nQn(θ).

Proof of the uniform convergence
Denote vi,n(λ, β) = F−1(si,n) − λwi·,nSn − xi,nβ = (λ0 −

λ)wi·,nSn+xi,n(β0−β)+ϵi,n.With Proposition 3, it remains to show
that p limn→∞ supθ∈Θ

1
n |
n

i=1 vi,n(λ, β)
2

− Evi,n(λ, β)2| = 0. To
do so, it is sufficient for us to show the pointwise convergence
p limn→∞

1
n [
n

i=1 vi,n(λ, β)
2

− Evi,n(λ, β)2] = 0 for each (λ, β),
and the stochastic equicontinuity of vi,n(λ, β)2.

Under Assumptions 6 and 7, Corollary 1 implies that vi,n(λ, β)
is L5 bounded uniformly in i and n, and geometrically L2-NED
uniformly in i and n. Thus, vi,n(λ, β)2 is L2.5 bounded uniformly in i
andn, and geometrically L2-NEDuniformly in i andnby LemmaA.1.
Thus, the pointwise convergence holds by the LLN in Jenish and
Prucha (2012). By Lemma 1 in Andrews (1992), the stochastic
equicontinuity originates in uniform L2 boundedness ofwi·,nSn and
xi,n, and1n

n
i=1

vi,n(λ1, β1)
2
−

1
n

n
i=1

vi,n(λ2, β2)
2


=

1n
n

i=1

[vi,n(λ1, β1)+ vi,n(λ2, β2)]

· [(λ2 − λ1)wi·,nSn + xi,n(β2 − β1)]


6

1
n

n
i=1

[4λm|wi·,nSn| + 4
K

k=1

|xik,n| · sup
βk

|βk|

+ 2|ϵi,n|] · [|wi·,nSn| · |λ2 − λ1| +

K
k=1

|xik,n| · |β2k − β1k|].

Proof of the equicontinuity
With stochastic equicontinuity and the boundedness of the

parameter space, the equicontinuity of σ−2E[F−1(Sn) − λWnSn −
Xnβ]
′
[F−1(Sn)−λWnSn −Xnβ] is a result of Corollary 3.1 in Newey

(1991).
Because 1

nE ln |In − λ1fDnWn| −
1
nE ln |In − λ2fDnWn| = (λ1 −

λ2)
1
nEtr[(In − λ̄fDnWn)

−1fDnWn], and

∥(In − λ̄fDnWn)
−1fDnWn∥∞ =

 ∞
l=0

(λ̄fDnWn)
lfDnWn


∞

=
1
λm

 ∞
l=0

(λ̄fDnWn)
lλmfDnWn


∞

6
1
λm

∞
l=0

ζ l
=

ζ

λm(1 − ζ )
,

we have
 1nE ln |In − λ1fDnWn| −

1
nE ln |In − λ2fDnWn|

 6 |λ1 −

λ2|
ζ

λm(1−ζ )
. �

Before proving asymptotic normality of the ML estimator, we
first prove the uniformly and geometrically L2-NED property of

zi,nϵi
σ 2
0

− rii,n − E( zi,nϵi
σ 2
0

− rii,n)

, where zi,n ≡


jwij,nsj,n. Denote

xi,n = (xi1,n, . . . , xiK ,n).

Lemma B.4. {zi,nϵi/σ 2
0 − rii,n − E[zi,nϵi/σ 2

0 − rii,n]}ni=1 is uniformly
L2.5 bounded, and geometrically L2-NED uniformly in i and n. {qi,n ≡

[
K

j=1(
xij,nϵi,n
σ 2
0
)2 + (zi,nϵi/σ 2

0 − rii,n − E(zi,nϵi/σ 2
0 − rii,n))2 +

(
ϵ2i,n−σ

2
0

2σ 4
0
)2]1/2} is also geometrically L2-NED uniformly in i and n.

Proof. By Corollary 1,

zi,nϵi/σ 2

0


is uniformly L2.5 bounded, and

geometrically L2-NEDuniformly in i andn. Because supi,n |Ezi,nϵi| 6
supi,n E|zi,nϵi| 6 supi,n ∥zi,nϵi∥p < ∞, the L2.5 boundedness in the
first claim follows from

|rii,n − Erii,n|

6

∞
l=0

|λlm|


j1


j2

· · ·


jl

wij1,nwj1j2,n · · ·

×wjl−1jl,nwjl i,n|fifj1 · · · fjl − Efifj1 · · · fjl |

6 2
∞
l=0

λlm∥Wn∥
l+1
∞

bl+1
f 6

2ζ
λm(1 − ζ )

.

Next, we establish the uniformly and geometrically L2-NED
property of {rii,n}. For {fi,n = f (ti,n)}, from the proof of Proposi-
tion 3,∥fi,n−E(fi,n|Fi,n(md0))∥2 6 A1ζ

m for some constantA1. Since
the chain i → j1 → · · · → jl → i is closed, we have d(j1, i) 6 d0,
d(j2, i) 6 2d0, . . . , d(j[(l+1)/2], i) 6 [

l+1
2 ]d0, . . . , d(jl−1, i) 6 2d0,

d(jl, i) 6 d0. So, with the inequality: |x1 · · · xl − y1 · · · yl| 6

C l−1l
i=1 |xi − yi| if |xi| 6 C and |yi| 6 C for all i′s, when l < m,

we have

∥fifj1 · · · fjl − E[fifj1 · · · fjl |Fi,n(md0)]∥2

6 ∥fifj1 · · · fjl − E[fi|Fi,n(md0)]
× E[fj1 |Fi,n(md0)] · · · E[fjl |Fi,n(md0)]∥2

6 blf


l

k=1

∥fjk − E[fjk |Fi,n(md0)]∥2 + ∥fi − E[fi|Fi,n(md0)]∥2



6 2A1blf
[(l+1)/2]

k=0

ζm−k
= 2A1blf

ζ−[(l+1)/2]−1
− 1

ζ−1 − 1
ζm. (23)

Hence, ∞
l=0

λl0((fDnWn)
l+1)ii − E


∞
l=0

λl0((fDnWn)
l+1)ii|Fi,n(md0)


2
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m−1
l=0

|λl0|

j1

· · ·


jl

wij1,nwj1j2,n · · ·

×wjl−1jl,nwjl i,n∥fifj1 · · · fjl − E[fifj1 · · · fjl |Fi,n(md0)]∥2

+

∞
l=m

|λl0|

j1

· · ·


jl

wij1,nwj1j2,n · · ·

×wjl−1jl,nwjl i,n∥fi · · · fjl − E[fi · · · fjl |Fi,n(md0)]∥2

6

m−1
l=0

|λl0| · ∥Wn∥
l+1
∞

2A1blf
ζ−[(l+1)/2]−1

− 1
ζ−1 − 1

ζm

+ 2
∞
l=m

|λl0| · ∥Wn∥
l+1
∞

bl+1
f 6 A2ζ

m

for some constant A2 that does not depend on n, whichmeans that
rii,n − Erii,n


is uniformly and geometrically L2-NED.

The uniformly and geometrically L2-NED property of {qi,n} is a
result of Lemma A.3. �

Proof of Proposition 4. We need to check the conditions of the
CLT of the L2-NED sequence, i.e., Assumptions 3 and 4 in Jenish and
Prucha (2012) hold for


qi,n

defined in Lemma B.4. Assumption 3

in Jenish and Prucha (2012) is satisfied because the error terms are
i.i.d. and {xi,n} satisfies Assumption 11.With LemmaB.4, conditions
(c) and (d) of Assumption 4 in Jenish and Prucha (2012) hold. Under
Assumption 12, the condition (b) in Assumption 4 in Jenish and
Prucha (2012) is satisfied. So it remains to check the uniform L2+δ1
integrability for some δ1 > 0. One sufficient condition (Shorack,
2000, p. 54) is to show supi,n Eq

2+δ2
i,n < ∞ for some δ2 > 0. Because

supi,n E|
zi,nϵi,n
σ 2
0

− rii,n −E(zi,nϵi/σ 2
0 − rii,n)|2.5 < ∞ from Lemma B.4,

ϵ i,n

is normally distributed and {xij,n} are uniformly L5 bounded,

we have

sup
i,n

Eq2.5i,n 6 sup
i,n
(K + 2)1.5


K

j=1

E
xij,nϵi,nσ 2

0

2.5
+ E

 zi,nϵi,nσ 2
0

− rii,n − E

zi,nϵi,n
σ 2
0

− rii,n

2.5
+ E

ϵ2i,n − σ 2
0

2σ 4
0

 2.5

< ∞. �

Proof of Theorem 2. Wewill show that 1
n |
∂2 ln Ln(θ0)
∂θ∂θ ′ − E ∂

2 ln Ln(θ0)
∂θ∂θ ′ |

p
−→ 0 and 1

n |
∂2 ln Ln(θ̂n)
∂θ∂θ ′ −

∂2 ln Ln(θ0)
∂θ∂θ ′ |

p
−→ 0, then 1

n |
∂2 ln Ln(θ̂n)
∂θ∂θ ′ −

E ∂
2 ln Ln(θ0)
∂θ∂θ ′ |

p
−→ 0. The second order derivatives of the log likelihood

are
∂2 ln Ln(θ)
∂β∂β ′ = −

X ′
nXn
σ 2 ,

∂2 ln Ln(θ)
∂β∂λ

= −
X ′
nWnSn
σ 2 ,

∂2 ln Ln(θ)
∂β∂σ 2 = −

X ′
n(F

−1(Sn)−λWnSn−Xnβ)
σ 4 ,

∂2 ln Ln(θ)
∂λ∂σ 2 = −

(WnSn)′(F−1(Sn)−λWnSn−Xnβ)
σ 4 ,

∂2 ln Ln(θ)
∂λ2

= −tr[(In −λfDnWn)
−1fDnWn(In −λfDnWn)

−1fDnWn]−

(WnSn)′(WnSn)
σ 2 ,

∂2 ln Ln(θ)
∂σ 2∂σ 2 =

n
2σ 4 −

(F−1(Sn)−λWnSn−Xnβ)′(F−1(Sn)−λWnSn−Xnβ)
σ 6 .

Similarly to the proof of Theorem 1, with the L5 boundedness
of {xi,n}, {wi·,nSn} and {vi,n(λ, β) ≡ F−1(si,n) − λwi·,nSn − xi,nβ}

uniformly in i and n, and their geometric L2-NED properties, their
products obey the weak LLN in Jenish and Prucha (2012). Thus, in
order to prove 1

n |
∂2 ln Ln(θ0)
∂θ∂θ ′ − E ∂

2 ln Ln(θ0)
∂θ∂θ ′ |

p
−→ 0, it suffices to show

that 1
n {tr[(I−λ0fDnWn)

−1fDnWn]
2
−Etr[(I−λ0fDnWn)

−1fDnWn]
2
}

p
−→
0. To do so, we show that {([(In−λfDnWn)
−1fDnWn]

2)ii} is uniformly
bounded and L2-NED uniformly in i and n. Because

{[(In − λfDnWn)
−1fDnWn]

2
}ii

=


∞
l=0

λl(fDnWn)
l+1

∞
l′=0

λl
′

(fDnWn)
l′+1


ii

=

∞
k=0

k
l=0

λk

j1

· · ·


jk+1

(fDnWn)ij1 · · · (fDnWn)jkjk+1(fDnWn)jk+1ji

=

∞
k=0

(1 + k)λk

j1

· · ·


jk+1

wij1,n · · ·wjk+1 i,nfifj1 · · · fjk+1 ,

the uniform boundedness comes from

|{[(In − λfDnWn)
−1fDnWn]

2
}ii| 6

∞
k=0

(1 + k)λkm∥Wn∥
k+2
∞

bk+2
f

6 λ−2
m

∞
k=0

(1 + k)ζ k+2 < ∞.

When k 6 m, inequality (23) implies

|λk0|

j1

· · ·


jk+1

wij1,n · · ·wjk+1i,n∥fifj1 · · · fjk+1

− E(fifj1 · · · fjk+1 |Fi,n(md0))∥2

6 λkm∥wn∥
k+2
∞

2A1bk+1
f
ζ−[(k+2)/2]−1

− 1
ζ−1 − 1

ζm 6 A3ζ
m+

k
2

for some constant A2 > 0. When k > m,

|λk0|

j1

· · ·


jk+1

wij1,n · · ·wjk+1 i,n∥fifj1 · · · fjk+1

− E(fifj1 · · · fjk+1 |Fi,n(md0))∥2

6 2λkm∥Wn∥
k+2
∞

bk+2
f 6 A3ζ

k

for A3 = 2λ−2
m . So,

∥{[(In − λfDnWn)
−1fDnWn]

2
}ii

− E[{[(In − λfDnWn)
−1fDnWn]

2
}ii|Fi,n(md0)]∥2

6

∞
k=0

(1 + k)|λk0|

j1

· · ·


jk+1

wij1,n · · ·

×wjk+1 i,n∥fifj1 · · · fjk+1 − E(fifj1 · · · fjk+1 |Fi,n(md0))∥2

6

m
k=0

(1 + k)A2ζ
m+

k
2 +

∞
k=m+1

(1 + k)A3ζ
k
= O(ζm).

Therefore, {[((In−λfDnWn)
−1fDnWn)

2
]ii} is geometrically uniformly

L2-NED.
Thus, we have shown 1

n |
∂2 ln Ln(θ0)
∂θ∂θ ′ − E ∂

2 ln Ln(θ0)
∂θ∂θ ′ |

p
−→ 0. Next, we

will prove 1
n |
∂2 ln Ln(θ̂n)
∂θ∂θ ′ −

∂2 ln Ln(θ0)
∂θ∂θ ′ |

p
−→ 0. Because θ̂n − θ0

p
−→

0, it is easy to check the other terms except ∂2 ln Ln(θ)
∂λ2

. To do so,
we only need to check that d

dλ
1
n tr[((In − λfDnWn)

−1fDnWn)
2
] =

2
n tr[(In − λfDnWn)

−1fDnWn]
3 is bounded. A sufficient condition is

that ([(In − λfDnWn)
−1fDnWn]

3)ii is uniformly bounded:

|([(In − λfDnWn)
−1fDnWn]

3)ii|

=


∞
l=0

λl(fDnWn)
l+1

∞
l′=0

λl
′

(fDnWn)
l′+1

∞
l′′=0

λl
′′

(fDnWn)
l′′+1


ii

=

 ∞
k=0


l+l′+l′′=k

λk0


j1

· · ·


jk+2

wij1,n · · ·wjk+2 i,nfifj1 · · · fjk+2


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∞
k=0


l+l′+l′′=k

|λ−3
m |ζ k+3

= |λ−3
m |

∞
k=0

0.5(k + 1)(k + 2)ζ k+2 < ∞.

Therefore, from 1
√
n
∂ ln Ln(θ̂n)

∂θ
= 0 =

1
√
n
∂ ln Ln(θ0)

∂θ
+

1
n
∂2 ln Ln(θ̄)
∂θ∂θ ′

√
n

(θ̂n − θ0), we have
√
n(θ̂n − θ0) = (− 1

n
∂2 ln Ln(θ̄)
∂θ∂θ ′ )−1 1

√
n
∂ ln Ln(θ0)

∂θ

d
−→

N(0,Σ−1
0 ). �

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2014.12.005.
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