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1. Introduction

The linear spatial autoregressive (SAR) model Y, = AW, Y, +
XnB + €, has been widely studied. Many of the early studies of the
model have been summarized in Anselin (1988), Anselin and Bera
(1998) and LeSage and Pace (2009). Kelejian and Prucha (1999)
and Lee (2007) study the generalized method of moments (GMM)
applied to the SAR model. Lee (2004) studies asymptotic properties
of the quasi-maximum likelihood estimator of the SAR model.

To obtain asymptotic properties of estimators in nonlinear spa-
tial models, laws of large numbers (LLN) and central limit theorems
(CLT) are necessary. Jenish and Prucha (2009) establish the CLT,
the uniform and pointwise LLN for spatial mixing processes. Jenish
and Prucha (2012) study asymptotic properties of near-epoch de-
pendent (NED) random fields. Subsequently, Jenish (2012) consid-
ers the estimation of a nonparametric regression function of NED
processes. Even though the previously mentioned studies provide
general asymptotic theories of large samples, we found that there
are few studies for specific parametric nonlinear spatial models. In
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this paper, we explore the usefulness of the spatial NED theories for
the estimation of a nonlinear SAR model that involves a nonlinear
transformation.

Some types of spatial models are designed to deal with share
data or positive data. In this study, “share data” refers to samples
with observed dependent variables whose values are between zero
and one. In this paper, we study share data with values in the open
interval (0, 1). An earlier example is in Lin and Lee (2010), which
studies a model of share data pertaining to county teenage preg-
nancy rates. However, they adopted the conventional linear SAR
model for their study. As a county’s teenage pregnancy rate must
be between zero and one, a linear model at best could only ap-
proximate the true model. This paper proposes a nonlinear model
with interactions, which takes into account the limited range of the
share variable. More specifically, because share data take values in
(0, 1), we formulate the model as s; ;, = F(AoWi. nSn+Xi.nBo +€in),
where F(-) is a strictly increasing cumulative probability function
on the real line R, and s; , represents the share variable of unit i
while the sample size is n. While the interest of this model is mo-
tivated by share variables, we consider a more general setting of
such a model with F(-) being a smooth monotonic function and
not necessarily a distribution function so that the setting can be
also used to study other types of variables, such as positive depen-
dent variables.
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This paper suggests estimation methods, namely, the maximum
likelihood (ML) method and the two-stage least squares (2SLS)
estimation, for the unknown parameters Ao and Sy while main-
taining the setting that F(-) is a known function. We first show
that the outcome s; , generated from this model is a spatial NED
random field. Then, we provide asymptotic analysis for parameter
estimates of this nonlinear spatial model based on the newly de-
veloped LLN and CLT in Jenish and Prucha (2012) for spatial NED
random fields. Our analysis goes beyond that of the popular SAR
model in the spatial literature.

This paper is organized as follows. We introduce the nonlinear
SAR model and derive the spatial NED property of the dependent
variable generated by this model in Section 2. We consider the esti-
mation of this model by the ML method and prove the consistency
and asymptotic normality of the MLE in Section 3. In addition to the
ML approach, Section 4 considers the IV estimation, which includes
the 2SLS approach, and a procedure to test a nonlinear functional
form against some alternatives based on 2SLS estimation. Finally,
Monte Carlo experiments are conducted in Section 5 to investigate
the finite sample performance of the estimates and sizes and pow-
ers of the test. All proofs for propositions and theorems are col-
lected in Appendices.’

2. The model and near-epoch dependence

As described in the introduction, we consider the model
Siijn = F()\Owi-,nsn + Xi,nlgo + ei,n)» (1)

fori = 1,...,n, where F(-) is a strictly increasing and continu-
ous function on the real line R and x; , = (Xi1.n, ..., Xik.n) € RX
is the vector of exogenous variables. In this paper, we consider a
parametric model in which the functional form of F is known and
does not involve any unknown parameters. For example, F(-) can
be the distribution function of the standard normal distribution
@ (), the logistic distribution, F(x) = 1/(1 + ™), or the function
F(x) = (x + +/x* + 4)/2 with range (0, 00).S; = (S1.n» - - - » Sn.n)’
is the n-dimensional column vector of outcomes.

This model covers and goes beyond linear spatial interaction
models. Thus it can possibly enable broader application of spatial
and network interaction models. Here are some possible applica-
tions: (1) Share data and percentage data that satisfy s; , € (0, 1).
An example is violent crime rates for all US states in a year. Another
example is the test pass rates of different schools or school districts,
e.g., in Papke and Wooldridge (2008). (2) Many data in economics,
such as the GDP of different regions and stock prices belonging to
the same industry, are strictly positive and might be spatially cor-
related. One way to model such data is to choose a strictly increas-
ing and positive F(-). In this paper, we shall consider the estimation
of the model (1) by the methods of ML and IV estimation.

There may be some possible concerns about our model and esti-
mation methods.? (1) In data sets with a non-negative dependent
variable and a significant numbers of observations taking on the
value 0, the above model is not suitable, and we should consider
using a Tobit model instead (see Xu and Lee, 2014). (2) The strictly
increasing assumption of F (-) might be too strong. For this concern,
however, we note that, in many economics studies, one may pre-
fer that the marginal effects of exogenous variables maintain the
same signs and having a monotonic property. In those situations,
the strictly increasing assumption of F(-) is preferred. The strictly
monotonic assumption is widely used in the transformation model

Ta supplement file which provides additional analysis and results are also
available upon request (see Appendix C).
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literature (see, e.g. Horowitz, 1996; Chen, 2002). (3) Since F(-) is
strictly increasing, its inverse exists and thus the model can be
written as F71(s; ;) = AoWi. xSy + Xi.nfo + €i.n and IV estimation
can be applied to estimate the model. This assertion is correct and
we will discuss the IV and 2SLS estimations in Section 4. However,
properties such as consistency and the asymptotic distribution of
an IV estimator do not follow from existing literature on typical IV
estimation with cross section or time series data. Also, they do not
follow from existing IV estimation for the linear SAR model. Thus,
rigorous study of those properties of an IV estimator still needs to
be conducted. We also study the MLE as it can be more efficient
than IV estimators. (4) It might be a strong assumption that the
functional form is known. Without a known function for F(-), the
model will be a semi-parametric one. We will explore such a model
in future research. This paper will focus on a parametric model, as
such a study can be a good starting point to understand the prop-
erties of popular estimation methods.

As S, is endogenous, Eq. (1) is a well-defined model if the sys-
tem determines a unique vector S, of outcomes given €, and X,
where X, is an n x K matrix of exogenous variables x; ,’s and €,
is the vector of disturbances. This is possible if there are proper
restrictions on the interaction effect A and the spatial weights ma-
trix W, whose ith row is w;. ,. The implied system of the specified
equations in (1) for all n units is

F(Aw1.,nSn + X1,0B + €1,0)
F(}‘wl,nsn + x2,n/3 + 62,11)
Sn = . (2)

F(Awy..nSn + Xn,nB + €n,n)

Before further discussion, we list some of our formal assump-
tions. The first set of assumptions concerns the geographical set-
ting of spatial units:

Assumption 1. Individual units in an economy are located or liv-
ing in a region D, C D C RY, where lim,_ o, |D,| = oo and R¢
is the finite dimensional Euclidean space of dimension d. The dis-
tance between every two individuals is larger than or equal to a
specific positive constant, say, 1.

The distance, as referred to in Assumption 1, can be defined
from the norm ||(xq, ..., Xq)|lcc = max; |x;| or other norms. The
above assumption is similar to that in Jenish and Prucha (2012). It
means, in a bounded space, there are at most a finite number of
units even if the population is infinite.

Assumption 2. Only individuals whose distances are less than or
equal to some specific constant may affect each other. Without loss
of generality, we set it as dy, which is greater than 1.3

The elements of the spatial weights matrix are defined in terms
of the strength of neighbors’ direct interactions with each other.
Under Assumptions 1 and 2, it follows immediately that in every
row i and column j in W), the total number of non-zero elements
is less than or equal to some finite constant uniformly in i, j and n.

For the spatial weights matrix W,,, as n tends to infinity, we
have a sequence of square matrices {W,} increasing in dimen-
sion. It is valuable to summarize some of the regularity for {W,} in
terms of relevant matrix norms. As shown in Kelejian and Prucha
(2001), the matrix norms ||.|| and ||.||; induced, respectively, by
the vector norms ||.||» and ||.||; are of particular interest. Explic-
n O iy |wij.al is known as the column sum

,,,,,

3 This allows individuals to have interactions with others, as individuals live at
least one unit of distance apart in Assumption 2.
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In the linear SAR model, it is required that sup; , [AW;ll« < 1.1In
our paper, we have a similar assumption. As F (x) is strictly increas-
ing, its derivative exists almost everywhere. The next assumption
concerns the derivative function F’ of F.

Assumption 3. The function f(x) = F'(x) > 0forallx € R, and
the following condition holds: ¢ = Ayby sup, Wyl < 1, where
bs = sup, f(X), Am = sup, 4 |A| with A being the compact param-
eter space of A on the real line.

Assumption 3 implies that elements in W, for all n are uniformly
bounded. Because the number of nonzero elements in each column
is uniformly bounded, {W, } is uniformly bounded in both row and
column sum norms. In many studies on linear SAR models in the
spatial econometric literature, the uniform boundedness in both
row and column sum norms for W, is a stated assumption. In those
cases, the uniform boundedness of elements of W, is an implied
necessary condition. The uniform boundedness of W, in both row
and column sum norms for a linear SAR model is important in order
to make the SAR system stable as n tends to infinity. Assumption 2,
on the geographical setting, is a stronger than usual assumption
for a linear SAR model. However, in many empirical applications,
such a specification is used. We find it to be analytically tractable
and simpler to adopt this assumption for our asymptotic analysis
of estimators for the nonlinear SAR model (1).

As ¢ is assumed to be finite, Assumption 3 has implicitly as-
sumed that f(x) is bounded. The logistic, normal, extreme value,
Laplace and ¢ distributions satisfy this assumption. The function
F(x) = %(x—i-\/ x% + 4) also satisfies this assumption. This assump-
tion is useful to establish the NED property of S, that will be dis-
cussed later. If W), is row normalized, then ||Wy|l.c = 1and ¢ =
Amby; hence, the condition in Assumption 3 for B will be satisfied if
Amb; < 1.This condition will, in turn, restrict what the parameter
space A of A can be. For example, if F is the standard normal dis-
tribution, f will be the standard normal density and by = 1/ V2.
For W, being row-normalized, A can be taken as a compact subset
of (—v/27, v/27). If F(x) = 1/(1 + ™) is the logit distribution,
then by = 0.25. For the logit transformation, the possible range of
parameter values of A will be a compact subset of (—4, 4) when
W, is row-normalized. Under Assumption 3, the right hand side of
Eq. (2) is a contraction mapping with respect to S, so Eq. (2) will
surely have a unique solution as in the following proposition:

Proposition 1. Under Assumption 3, there is exactly one solution S,
forEq. (2).

When Assumption 3 fails to hold, it is possible that Eq. (2) has
multiple solutions and we do not study such cases in this paper.
For example, when F(x) = exp(x), the system

In Si,n )\wl-,nsn + xl,n,B + 6l,n

= (3)

Ins, AWn. 1Sy + Xp B + €nn

might have several solutions. As a specific case, the system (In s,
Ins;) = (0.1sp, 0.1s7) has two solutions: (s1,S;) = (1.1183,
1.1183) and (35.7715, 35.7715).

Since our model is a nonlinear one with spatial correlation, in
order to show the large sample properties of an estimator, we ex-
plore a type of weak dependence on the sample observations gen-
erated by the model. We consider NED random fields in this pa-
per due to the intrinsic spatial autoregressive feature of the model.
As in Jenish and Prucha (2012), for any random vector Y, ||Y|l, =
[E|Y|P]/?, where |Y| is the Euclidean norm of Y. D,, C D is a finite
set and |D,| is its cardinality.

Definition 1 (NED).LetZ = {Z; ,, i € Dn, n > 1} be a random field
with [|Z; n|l, < oo,p > 1,lete = {€;,,1 € Dy, n > 1} be arandom
field, where |D,| — coasn — oo,andletd = {d; ,,i € Dy, n > 1}
be an array of finite positive constants. Then the random field Z
is said to be L,-near-epoch dependent on the random field € if
1Zi,n —E(Zi n| Fin () |lp < di.n(s) for some function ¥ (s) > 0 with
limg_, oo ¥ (s) = 0, where o-field F ,(s) = o({€jn : d(j,1) < s}).
The 1/ (s), which is, without loss of generality, assumed to be non-
increasing, is called the NED coefficient, and the d; ,’s are called
NED scaling factors. Z is said to be L,-NED on € of size —A if ¥ (s) =
O(s™#) forsome . > A > 0.Furthermore, if sup, sup;cp, din < 00,
then Z is said to be uniformly L,-NED on €. If y(s) = O(p°), where
0 < p < 1,thenZ is called geometrically L,-NED on e.

The term of geometrically L,-NED random fields can be found,
for example, in Hill (2010). Obviously, geometrically L,-NED ran-
dom fields are also L,-NED of size —A for any A > 0.

Another assumption is needed regarding the disturbances in
Eq. (1).

Assumption 4. For eachn, ¢; ;s are i.i.d. (0, 002) double arrays.

The regressors x; ,’s may be treated as deterministic or random
variables. For generality, they are treated as random variables with
spatial correlation. For the following propositions on NED, the
explicit spatial structure on x; ,'s is unnecessary, but it will be
needed later on.

Lemma 1. Under Assumptions 3 and 4, if sup, E|e; [P < oo and
SUD; g.n IXik nllp < 00 for some 0 < p € Z, then s;; is uniformly L,
bounded, i.e., sup; , E[s;q|P < o0.

Proposition 2. Under Assumptions 1-4, if sup; ., IXinllz2 < 00,
then ||s; n—E(si n| Fi,n(mdp))|l2 < by (o0+IlBoll4 SUpi,n.||Xik,n||2)§m+.l
/(1 —=¢), where F; 1 (s) = o ({€jn, Xj,n : d(, 1) <s)),ie, {sia}i;is
a geometrically L,-NED random field on {€; 5, X; »}i_; uniformly in i
and n.

Proposition 1 in Jenish and Prucha (2012) discusses the condi-
tions under which a nonlinear system is L,-NED and we apply their
conclusion to obtain the above proposition for our system. Propo-
sition 2 has a useful corollary.

Corollary 1. Under Assumptions 1-4, if sup;y , [|Xik,nll2 < 0o, then
{wi nSn}_, is uniformly and geometrically L,-NED: ||wj Sn
E(WinSnl Fin(mdo)) 2 < 00¢™ " /[hmby (1 = )]; if, in addition,
sup, El€iq|P < oo and sup; ., IXiknll, < oo forsome 0 < p € Z,
then {w; Sy}, is uniformly L, bounded in i and n.

Another interesting variableis t; , := F -1 (si.n), which s a trans-
formed dependent variable. The model (1) has the following equiv-
alent representation: t;, = AoWi nSp + XinBo + €in. Corollary 1
implies immediately that {t; ,} is a geometrically L,-NED random
field on {€; , X; 5}, uniformly iniand n.

3. The MLE and its large sample properties

In this section, we would like to consider the MLE method for
the model (1). For the MLE approach, Assumption 4 needs to be
strengthened such that ¢; ,’s are normally distributed and we re-
quire that {x; ,}!; is an «-mixing random field with ¢-mixing
coefficient a(u, v,r) < (u + v)*@(r) for some t > 0 and
lim,_, o, @(r) = 0. The definition and some discussion of a-mixing
random fields can be found in Jenish and Prucha (2009, 2012).

Assumption 5. f(x) = F’(x) is a bounded Lipschitz function.
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Assumption 6. ¢;,’s are i.i.d. N(0, %) double arrays; X, and ¢, are
independent.

Assumption 7. (i) {x;;}I_; is an o-mixing random field with a-
mixing coefficient a(u, v, r) < (u+v)"@(r) forsome t > 0, where
a(r) satisfies Y oo, r471a(r) < oo. (i) sup; ., lIXinlls < 00.*

Assumption 8. The parameter space ® of & = (A, 8/,0%) is a
compact subset of R*2,

Recall fp, = diag{f(t;n),...,f(tyn)} is the diagonal matrix
with f(t1,n),...,f(ty,n) as its diagonal elements. Then, under
normal disturbances, the conditional log-likelihood function of S,
from (1) is

1
InL,©0) = —g In@ra?) = 55 1F ' (S0) — AWaS, — Xul

X [F71(Sp) — AWnSy — X Bl + Inlfy | — AW,l.  (4)

Define Q,(0) = E[InL,(0)]. Now we will discuss identification.
We shall present some sufficient conditions for identification with
afinite sample. As the sample size tends to infinity, we assume that
the identification remains valid.’

The following lemmas provide some regularity conditions in or-
der to show that, when the sample size is finite, the true parameter
vector can be identified as the unique maximizer of Q,,(6).

Lemma 2. Under Assumptions 3 and 6, when W,, # 0, X, has
full column rank, the characteristic values of fp, W, are all real, and
limy_, 10 F(x)/x = 0, then Q,(0) is uniquely maximized at 6.

The characteristic values of fp, W, are all real when W, is sym-
metric. It holds also for Ord’s case where W, is constructed from
row-normalization of a symmetric spatial matrix (Ord, 1975). To il-
lustrate this point, suppose W,, = R,W; where W,  is a symmetric
matrix and R, is a diagonal matrix with a strictly positive diagonal.
As fp, Ry is positive definite, it has a decomposition fp,R, = ByB,
where B, is invertible. Hence, fp, W, = B,B,W;’ = B,(B,W;B,)B, .
As B ,W;B, is symmetric, there exists an orthonormal matrix Q,
and real eigenvalue matrix A, such that B,W;B, = Q,4,Q,.In
consequence, fp, W, = B,Q,AnQ,B;' = P,A,P, !, where P, =
B, Q,, is diagonalizable and A, is the diagonal matrix of eigenval-
ues of fp, W,,.

There are also other sufficient conditions that guarantee iden-
tification. The following is one of them:

Lemma 3. Under Assumptions 3 and 7, if W,W, is not a diagonal
matrix, elements of W; W, are not all the same, w;, = 0 for all i,
Xy, has full column rank, f (-) is differentiable, and there is at least an
X € RU {400, —00} such that f'(x) = 0 while f (x) # 0, then Q,,(0)
is uniquely maximized at 6.

4 Here, we consider the Ls norm because in Lemma 1 the order of moments is an
integer and in the proof, we require the order of moments to be greater than four.

5 It was pointed out in Wooldridge (1994, p. 2653-2654) that, for M-estimation,
“Verifying that 6, is the unique minimizer of q in either the stationary or
heterogeneous case often requires knowing something about the distribution of
conditioning variables, and so identification is often taken on faith unless there
are reasons to believe it might fail. Newey and McFadden (Section 2.2) give three
examples of how to verify identification in examples with identically distributed
data”. The g in Wooldridge (1994) is lim,_, o n~'Q, (@) in this paper. Hence, even in
simpler models with dependence and heterogeneity, it is usually hard to establish
the identification in the limiting sense.

All of the technical conditions in Lemma 3 are easy to satisfy,
and this lemma includes the linear case: F(x) = x. If F(-) is a dis-
tribution function, then f(-) is its density function. The condition
f'(x) = 0 will be satisfied if f(.) has some modes. The sufficient
condition f'(x) = 0 rules out a strictly convex or concave F(x) if
we only consider x € R. The strictly increasing and strictly convex
function F = (x 4+ +/x*> + 4)/2, which is considered in the Monte
Carlo simulation, does not satisfy the condition f’(x) = 0 for some
X € R, but we have limy_, f'(x) = 0. The preceding sufficient
conditions guarantee the Q,(0) is uniquely maximized at 6y via the
information inequality. In the limit as n tends to infinity, we as-
sume the identification in terms of limiting information inequality
remains valid.

Assumption 9. liminf,,_, o, %[Q,1 (6o) — Qu(0)] > 0 forany 6 # Hy.

Having the identification, we still need to show the uniform
convergence: % SUPgep | INnL,(0) — Qn(6)] L 0and the equiconti-
nuity of %Q,,(@) in order to establish the consistency of the MLE.
In proving the uniform convergence of the log-likelihood func-
tion, one of the key points is to show the uniform convergence of
the component [In|l, — Afp,Ws| — Eln|l, — Afp,Wy|]/n, whose
form is not similar to the usual form of LLN. To show its uni-
form convergence, the formula of the Taylor series of In |I,, — AW,|
in Qu and Lee (2013) is useful. For [|Afp, Whlleo < ¢,i€., |A] < &/
b, Wa ll o, which holds under Assumption 3, limy_, o5 || (Afp,, W) lloo
< im0 |Afp, Wally, < limio ¢' = 0. Because any two norms
on a finite dimensional linear space are equivalent (Theorem 4,
p. 260 Royden and Fitzpatrick, 2010) and the convergence for all
elements in a sequence of matrices with the same dimension is
equivalent to the convergence in matrix norm (Theorem 18.2.20,
p. 431 Harville, 1997), limy_, oo (Afp, W,)! = 0. Then by Theorem
18.2.16 (p. 429 Harville, 1997), (I, — Afp,Wa) ™1 = Y120 A (fo, W'
for || < ¢/|1fo, Whlloo. Thus, by Theorem 21(ii) in Amemiya (1985,
p. 461), d1nl, — Afp,Wal/dh = —trl(ly — Ao, W)™ "fo,Wal =
— 3o Mer((fo, W) ).

When A = 0,In|I, —Afp, W,| = 0.When A € (0, ¢/|lfp,Wnllool,
because

L L n
D M e (o, W) | = DD A (o, W)
=0 =0 i=1
> Wﬂ o0
<l Wil 3¢t = T Wnlloe 5
1=0 1-¢

the dominated convergence theorem is applicable:

*din|l, — vfp, Wyl
—_—— —dv

mmﬁmw—/
0 dU

A OO
— / > vltr((fp, W) v
0 =0
o A
—Z/ (o, W)t dv
1=0 V0
[ee) }\l
=) = ((fp, W)
=1 !

o0 1 n
=20 o (6)
=1 i=1

Similarly, when A € [—¢/||fp, Wnlloo, 0), the series expansion also
holds. Hence,
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1
*(lrl I — kaanI — Eln |l — Afp, Wal)
—*Z 53D D) ST
=1 j1 2 Ji—1

X wfquqn(fim o 'ffl—l - Efifh o .fjl—l)' (7)

The next proposition is about the NED property of fif;, - - - fj,_,
and the uniform convergence:

Proposition 3. (i) Let f; be the ith diagonal element of the diagonal
matrix fp,. Under Assumptions 1-5, for every positive integer | and
every point i, pick an arbitrary chain f;, fi,, fi,, ..., fi such that
d(i, i) < doandd(ip, ip+1) < doforall1 < p < 1-1,then{fif;, --- fi;}
is geometrically L,-NED uniformly in i and n.

(ii) sup; o (In |, — Afp, Wa| — EIn |, — Afp, Wy|)/n 2> 0.

To show the uniform convergence, we adopt a strategy from Qu
and Lee (2013). For any given small positive number € > 0, we can
divide the summation in Eq. (7) into two parts (I < Ko &I > Kp)
for some constant K, that does not depend on n. We show the
uniform convergence of the first part by properties of NED random
fields and that the second part can be bounded by €/2, and thus
we establish the uniform convergence. Details of the proof can be
found in Appendices.

Theorem 1. Under Assumptions 1-9, the MLE  is a consistent
estimator of 6.

With consistency of the estimator, we next discuss the asymp-
totic distribution of MLE. The partial derivatives of the log-
likelihood function in Eq. (4) are 2@ — L (WaSp) [F~(Sp) —
AWy =X B1—tr (I —Afp, Wa) ~ lfDHW] 3‘“L"<9> LXF (S —

AW,S, — Xaf] and M@ — 1, 4 1 [F 1(Sn) — AW,S, —
XuBYIF~1(S) — AW,S, — X, B]. To deduce the CLT, we write the
score as a summation. Denote z, = ) ., Wi nSjn and iy =
> 20 A ((fo, Wa)* 1), From the first order condition, we have

1 91nLy(6o)

N KL
€ 2 N € 2 .
1 n Zl,ﬂel,ﬂ/a() - ru,n - E[Zz,nel,n/ao - rn,n]
2
_ ﬁ Z Xi n€in/ g . (8)
i=1

(8, — 03)/(209)

To prove the asymptotic normality of the estimator, a key step
is to show that the above sequence of scores would obey a CLT. For
that purpose, we need additional regularity conditions:

Assumption 10. 6, is in the interior of the parameter space ©.

Assumption 11. (i) For some § > 0, the a-mixing coefficient of
{xi,n}i_; in Assumption 7 satisfies

o0

N5
E rd& e T3 () < oo,
r=1

where 7, = 87/(2 4 8). (i) Zx = plimpoon™' )| X Xinisa
positive definite matrix.

Assumption 12. ¥y = lim,_, X, eXists and is nonsingular,

E

%Var(z?:l(zi,nfzi,n — Tiin, xi.n;i , iin_ ) )
% %

where X, =

By our assumptions, we know that % 2?21("1' n€in/0g, €y —

002)’ i> N (0, diag(XYy, 200 )), where the asymptotic variance is
nonsingular. Therefore, the nonsingularity of X, may be mainly

captured by the asymptotic variance of = Zl 1Zin€in/ 00 Tii.n)

via the inverse form of a partitioned matrlx Alternatively, one
may investigate the concentrated log likelihood function In L., ())
of » with B and o concentrated out. The corresponding asym-
ptotic variance of the normalized score of A is lim,_ %Var

Z?;](Zi"n:’n — Tiin) — [dlag(hmnﬁoo 21 1 ,nxz ns 2‘70)]_13 =
—limys oo nE[BZ In L., (Xg)/0A2], where B = lim,_, o ncov(Zl ;

Zj n€; Xi n€i 2
(5 — i), (U €2,

)) Thus, Assumption 12 preserves

the local 1dent1f1ca€1or1 in the limit.
To establish the asymptotic normality, we apply the CLT from
Jenish and Prucha (2012) To do so, we show that {[(Z’ e

(Xx 1161)2 + ( In
Then with Assumptlon 12, we have the following result:

) 211231 is uniformly and geometrlcally NED.

Zi n€in

Proposition 4. Under Assumptions 1-12, ﬁ Yo )

— Tii,n,

Xi.n€i,n 1n
et 24 2y 4 N, Zo).

In order to derive the asymptotic distribution of an extremum
estimator, as usual, one may investigate the linearization of the
first order condition which characterizes the extremum estimator,
by the mean value theorem (see, e.g Amemiya (1985)). For the ML
estimation, this linearization will involve the product of the score
and the Hessian matrix of the log likelihood. With Proposition 4,
the score vector is asymptotically normal. The Hessian matrix can
be shown to converge uniformly in probability to a non-singular
matrix. Thus, the asymptotic distribution can be derived as in the
following theorem:

Theorem 2. Under Assumptions 1-12, /n(@y — o) — N(0, =Zh.

4. IV and two stage least square estimation

In this section, we consider IV estimation of our model. We keep
Assumptions 1-4. Because IV estimation is distributionally free, the
independence of disturbances in Assumption 4 will be sufficient
and there is no need for the use of the normality in Assumption 6.
With this independence assumption, {s,;n} remains a uniformly
and geometrically L,-NED random field on {¢,} in Proposition 2.

IV estimation can be applied to the model expressed as T,, =
AWLS, + XnB + €n = Z,6 + €,, where Z, = (W,,S;, X)) and § =
(A, B')’.For general 2SLS estimation, let Q, be an IV matrix. In prac-
tice, possible IV variables can be X, and WX, ,, where X, , is the
submatrix of X;, with the exclusion of the intercept term ¢, when
W, is row normalized such that W,, = t,. But if W,, is not row
normalized, W,X,, can be used because W, will not be equal to
t, and may not be perfectly collinear with X,,. In addition to WX,

W2X, may also be used. With the IV matrix Q, = (q’]yn, e )
the corresponding IV estimator is '
= [Z,Qu(QyQ) ' QZn] "' Z1Qn(QQ0) ' QT 9)

Assumption 13. (i) The instrumental variable {q; ,}]_; isa geome—
tric L, NED random field on {x;,}!; uniformly in i and n’

6 We can relax {gi.n}i=; to be an NED random field with NED coefficient s~" for
some constant r > 0, but then we need to add a constraint on the & in condition
(ii): r > d(2&€ — 4)/(& — 4). To simplify the statement, we just assume geometric
L, NED. We have an older version of this paper where we assume that {x; ,}i, and
{gin}iL, are exogenous deterministic variables, which are uniformly bounded. In
that setting, the spatial process properties would not be needed.
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(i) sup; , lginlle < oo for some & > 4. (iii) Q, and ¢, are indepen-
dent for all n. (iv) Xy = plim,_, « Q,Qn/n exists and is positive
definite. (v) Xz = plimp_,o0(EZ,)'Qn/n exists and has full row
rank K + 1.

It is not difficult to verify that X, and W,X;, satisfy As-
sumption 13. With Assumption 13, {(wi. nSp, Xin) ® qin}i; and
{€inGin}; are uniformly Lyinc,2,2.5) bounded and geometric NED
uniformly in i and n. Therefore, we have %Q,Qen = 0,(1), (Zyn —

EZ,)'Qu/n 2 0and

Corollary 2. plim,_, o Z;Qy/n = Xy.

Then, the consistency of the IV estimator (SAn follows because
-1 -1
~ 1., (1 1,

1 1 11
X ~Z,Q, (HQﬂQn> ~Qén = 0p(1). (10)

As usual, o2 can be estimated by the sample average of the esti-
mated residuals,

-~

1 R - ~ ~
n2 = E(Tn — MaWhiSy — Xn,Bn)/(Tn — A WpSp — Xn,Bn)- (]1)

With Corollary 1, Assumptions 6 and 7,
and %(Wnsn)’xn are all 0,(1). Because

% (WiSn)' WnSh, %6,{, WhSn

o~ 1 —~ —~
0,12 = E[fn - ()‘-n - )\O)Wnsn - Xn(,Bn - ﬂO)]/
X [en — (on — 20) WSy — Xu(Bn — Bo)]

1, 1 ~ ,
Efnfn + E()Ln - )LO)Z(WnSn) Wnsn

-~ 1 ~ 2 ~
+ (B = o) XX — Bo) — = (ks = ho)ey Wa,

2, ~ 2 ~
— =Xy (Ba — Bo) + =(An — Ao)
n n

X (WaSp) Xa(Br — Bo), (12)

the consistency of ):; and B; implies the consistency of (;;2.
We can apply the CLT in Jenish and Prucha (2012) to Q,éen/\/ﬁ
and obtain the asymptotic normality for the 2SLS estimator:

V@, —8) 5 N, 03 (X200 Z0 Z50) 7). (13)

If EZ, is taken as an IV matrix, then the asymptotic variance be-
comes limy_, o EZ,EZ, /n. Since (EZ,Q,)(Q,Qn) ' (Q:EZ,) < EZ/EZ,
for any IV matrix Q,, EZ, is the optimal IV matrix. In sum, we have

Theorem 3. Under Assumptions 1-4, 7, 11 and 13, \/H(S,: ) 4
N(0, 0¢(Zz ZEQ] Yaz) ™). Furthermore, EZ, is the optimal IV matrix,
with which the asymptotic variance of the estimator is 002 (EZ)EZ,)~ L.

As the distribution of ¢; ,, is unknown, the optimal IV estimation
would not have a closed form expression for convenient use.’
Intuitively, we propose a feasible simulated optimal IV estimation:

(1) Use a general 2SLS estimator §, derived from using some IVs
such as (X, W, X,), and get the residuals € ,’s.

7 Even if €; » is known to be normally distributed, a closed form expression is still
hard to get due to the nonlinearity of the model.

(2) Use the empirical distribution of € ,,'s to generate R number
of €m = (€1.my .-, €nm), and use these to generate RS;,’s, and
evaluate their emplrlcal mean as ES,,

(3)Use (WES,, X,) asIVto obta1n5 = [(WESn, X)'Z. 1™
Xn)'Ty.

The Monte Carlo experiments in Section 5 show that the
simulated optimal IV estimator is more efficient than the 2SLS
estimator in most cases.

The 2SLS estimation also provides a method to test a speci-
fied functional form F(-) against an alternative: Hy: the true func-
tional form is F;; H;: the alternative functional form is F,. Denote
tin = Fy'(sin) and &, = F, '(sin). Let y # 0O be any con-

'(WES,,

stant. We consider the following model: (1 — a)t;, + ayti, =
AWi. nSp + XinP + €in, i€,
tin=a(tin — Vfi,n) + AWj. nSp + Xin B + €in. (14)

Then Hy is equivalent to a = 0 and H; is equivalent to a = 1.
We can show that {f,-,,,} is also an NED random field for several
widely used distributional families when the true F; (-) is a logit (or
normal) transformation.® Because t; , is strictly increasing with re-
spect to f; ,, usually there is serious collinearity between t; , and
fi.n. Thus we should choose a y to eliminate some of the possi-
ble collinearity. Let f1(-) and f>(-) be respectively the derivatives
of F;(-) and F,(-). Since &, = F; '(sin) = F, '(Fi(tin)),we have
dtin/dtin = fi(tin)/f2(tin). That is dtin/dtin = fo(tin)/fi(tin)-
Thus we choose y be the mean of f,(¢; ) /f1 (ti n). Experiments show
that this can significantly reduce the multicollinearity. For exam-
ple, when F;(-) is the logit and F, (x) is the standard normal distri-
bution function, the R? of regressmg tin ON t, . is about 0.99 while
the R? of regressing t; , on t; , — Yt , is only about 0.05. Bootstrap-
ping is utilized to obtain a more precise critical value to test Hy. We
can do the test in the following steps:

(1) Estimate t; , = Awj. nSp + Xi.nB + €i,n by 2SLS and obtain the
residuals &,, whose empirical distribution is Fz,;

(2) Generate n random draws e(r) ’s from the distribution Fg,,
and then generate Sn by contraction mapping, calculate ™ and
estimate the equation t(') = a(t(r) y<”f(')) + AW nS 4 X0+

(r) with 2SLS to obtain a(” we can adopt X,,, W, X, and W2X; , as
the IV’s, where X, ,, is the exogenous variable matrix without the
constant;

(2) Repeat Step (2) R times and obtain the bootstrap critical
value for 5% level of significance for a one-sided test Hy : a = 0
againstH; : a= 1.

5. Monte Carlo experiments

5.1. Estimation

In this section, we conduct some Monte Carlo experiments to
study the finite sample properties and the robustness of our esti-
mators. Specifically, we would like to investigate the following four
issues in the experiments: (1) comparing the marginal effects of
nonlinear and linear models; (2) the precision of predictions from
nonlinear and linear models if the true model is nonlinear; (3) the
finite sample performance of our estimators; and (4) the robust-
ness of the QMLE if ¢; is not normally distributed.

In our experiments, s; , = F(Aw;_nSp+ B1-+ BaXin+€in), Where
the true values of coefficients are (81,0, B2.0) = (—1, 1) and €; ,’s
are i.i.d. N(O, 002). The x; ,’s are designed to allow spatial correla-
tion: (X1.ny - - s Xnn) ~ 1.5(In — 0.2W,)~'N(0, I,). The generation

8 See the supplement material for the proof (see Appendix C).
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Self Marginal Effects Estimated by Different Models
0.7

0.6
0.5
0.4 TIPS
0.3

0.2

200000 0 GEOTHDY @ G

Estimated Marginal Effects

0.1

oL . L L L L
0 005 01 015 02 025 03 035 04 045 05

true Marginal effect

Fig. 1. Self marginal effects when true F(x) = @ (x).
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Fig. 2. Self marginal effects when true F(x) = (1+e™)".

of W,, will be discussed in the next paragraph. In the experiments,
three different nonlinear functions, namely, F(x) = 1/(1 + ™),
F(x) = @(x) and F(x) = 0.5(x + +/x? + 4), are considered. The
third function is a strictly increasing convex function with two
asymptotes,y = xandy = 0.WhenF(x) = 1/(1+e ) and F(x) =
@ (x), 0g’s are respectively 1.5 and 1, since the normal distribution
has thinner tails while the logit distribution has relatively thicker
tails. The true ¢ is designed to be 1 or 1.5 so that the contraction
mapping holds for each of these two models. When F (x) = 0.5(x+
A/x% + 4), A9 is 0.4 or 0.7. We consider various sample sizes of 100,
200, 500 and 1000. Detailed parameters with corresponding de-
signs on x; , and F(-) are noted in each of the tables in Appendices.

The weights matrix W, is generated from county data in the US.
When the sample sizes n are 100, 200 and 500, W, is generated
from 761 counties in 10 states as in Lin and Lee (2010). First, we
construct Wy, as follows: Wj; o, equals 1 if county i and county j
are contiguous, zero otherwise. In our Monte Carlo experiments,
we generate W, randomly from Wy, as follows: we generate a
natural number m uniformly distributed between 1 and (761 — n),
and then use the entries of Wy, that are between the mth row
and the (m + n — 1)th row and between the mth column and the
(m + n — 1)th column to form an n by n matrix W,,. Then we row-

normalize \/7,, to get the weights matrix W,. When the sample size
is 1000, we do it in a similar way, except that W, is generated from
all 3142 counties in the US.

As the conditions of the contraction mapping theorem hold, we
can generate S; using contraction mapping. We start by letting

5\ = F(B1+BaXin+ein) thens T = FAW;.nSY +B1+ Baxin+

€in). The iteration stops when max; |sl-(":1) - 5?;)1| <1078
Besides MLE, we also do IV and 2SLS estimation. For IV esti-
mation, we use W.Xo, = Wy(X1.n, ..., Xnn)" as the IV for W,S,,

where X, , is the second column of X,,.° For 2SLS, we use W, X, ,
and W2X, ,,, as the IVs for W,,S,.

In the last experiment, we investigate the performance of the
estimators when the normality of the error terms does not hold.
We try four different distributions: uniform, t(5), mixed normal
and (0.5, 0.5) distributions. To make our results here comparable
to those in the normal distribution case, we normalize and
scale these distributions such that their expectations are all zero
and their standard deviations are all 1.5. Explicitly, we generate
random numbers from the following four distributions: mixed
normal (with half probability N(6/ V17,9 /68) and half probability
N(—6/+/17,9/68)); +/1.35 times t(5), where t(5) is the Student
t-distribution with five degrees of freedom; uniform distribution
U(—1.5+/3, 1.54/3); and +/18(5(0.5, 0.5) — 0.5), where B(a, b)
is the two-parameter beta distribution with parameters a and b.
Notice that the density of the mixed normal has double peaks and
that (0.5, 0.5) has a U shape on (0, 1).

To get the empirical means, standard deviations and root mean
squared errors (RMSE) of the estimates, we do 1000 repetitions for
each design.

Marginal effects of exogenous variables are often considered in
empirical studies. Hence we first consider the marginal effects in
the Monte Carlo experiments. For illustrative purposes, we focus
on the self marginal effect, 9s; ,/9x;n, = B2[(In — Afp, W,,)”fDn],-,-.
With a sample size n = 200 and F(x) = &(x), we show the self
marginal effects in Fig. 1; when F(x) = 1/(1 4 e™¥), the result is
shown in Fig. 2. We have the true self marginal effects on the hori-
zontal axis. Thus, points on the 45-degree line are equal to the true
self marginal effects. We can see from the graph that the estimated
self marginal effects are much more accurate than those estimated
by linear models. If we use a linear SAR model, the estimated self
marginal effects will be nearly the same for all individuals. Differ-
ent sample sizes and parameters have been tried and their figures
are similar to Figures 1 and 2.'°

Second, we examine the predictions of different models. Here
let us recall binary choice models, which are usually estimated by a
probit or logit model, though the linear probability model is easier
and usually gives the same signs for estimators of coefficients. One
of the drawbacks of the linear probability model for binary choice
models is that its predicted probability can be greater than 1 or less
than zero. When the range of dependent variables is not R, similar
phenomena appear. As can be seen from Fig. 5, 11% of predicted
values of the dependent variable from the linear SAR model are out
of the interval (0, 1) when the true modeliss; , = F(Aw; nSp+B1+
Baxin + €in), with F(x) = 1/(1 4+ e™). Besides, we compare the
distance between S, and its estimated value §n by 1-norm and 2-
norm: [|S, — S9||; = 16.3704 < 19.2970 = ||S, — S/ ||, and
[1Sn — S5 ||, = 2.1037 < 2.3008 = ||S, — S\ |,. These results
show that the true nonlinear model has better prediction. To check
the robustness of our conclusion, we also try various sample sizes,
parameters and functional forms and we obtain similar figures and
conclusions.

From Tables 1-3, we have several observations:

(1) As the sample size increases, both biases and variances of
estimators decrease. This verifies the consistency of the estimators.

(2) For most experiments, the biases of IV, 2SLS and simulated
optimal IV estimates are less than the bias of MLE.

(3) When we compare the variance of estimators, the simulated
optimal IV estimation is more efficient than the 2SLS (especially
when the sample size n > 200), and the 2SLS is a little bit more
efficient than the IV estimation. The variance of MLE is obviously
less than those of IV/2SLS/optimal IV estimators. For instance, from

9 The first column of X, is the constant intercept term.

10 Those figures can be found in a supplement file (see Appendix C).
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Table 1
Estimation results when F(x) = 1/(1 + exp(—x)).
Ao n v 2SLS Optimal IV MLE
mean sd RMSE mean sd RMSE mean sd RMSE mean sd RMSE
A 09111 1.3373 1.3402 0.9784 1.2916 1.2918 0.9028 1.3840 1.3875 0.8669 0.8282 0.8389
100 B —0.9598 0.6123 0.6136 —0.9900 0.5919 0.5919 —0.9558 0.6339 0.6354 —0.9409 0.4006 0.4050
Ba 0.9980 0.1033 0.1033 0.9955 0.1029 0.1030 0.9983 0.1034 0.1034 1.0045 0.0944 0.0945
A 1.0216 0.9388 0.9390 1.0604 0.9266 0.9285 1.0105 0.9147 0.9147 0.9522 0.5506 0.5526
200 B —1.0084 0.4007 0.4008 —1.0243 0.3960 0.3967 —1.0037 0.3916 0.3916 —0.9802 0.2499 0.2506
1 Ba 0.9989 0.0889 0.0889 0.9963 0.0884 0.0884 0.9995 0.0879 0.0879 1.0056 0.0735 0.0737
A 0.9300 0.7243 0.7276 0.9541 0.7138 0.7153 0.9237 0.7069 0.7110 0.9505 0.4115 0.4144
500 B —0.9677 0.3101 03117 —0.9777 0.3057 0.3065 —0.9650 0.3025 0.3045 —0.9763 0.1850 0.1865
Ba 1.0009 0.0499 0.0499 1.0000 0.0496 0.0496 1.0011 0.0493 0.0493 1.0013 0.0443 0.0444
A 0.9899 0.2563 0.2565 0.9921 0.2540 0.2542 0.9912 0.2470 0.2471 0.9901 0.1576 0.1579
1000 B —0.9961 0.0962 0.0963 —0.9969 0.0955 0.0955 —0.9966 0.0933 0.0934 —0.9963 0.0647 0.0648
Ba 0.9983 0.0327 0.0327 0.9982 0.0326 0.0327 0.9983 0.0324 0.0325 0.9988 0.0312 0.0312
A 14176 1.2879 1.2906 1.4796 1.2473 1.2475 1.4101 1.2901 1.2932 1.3715 0.7902 0.8006
100 B —0.9594 0.6393 0.6406 —0.9896 0.6197 0.6198 —0.9557 0.6415 0.6430 —0.9381 0.4130 0.4176
B 0.9982 0.1037 0.1037 0.9957 0.1033 0.1034 0.9985 0.1036 0.1036 1.0048 0.0945 0.0946
A 15219 0.8984 0.8987 15575 0.8879 0.8897 15021 0.8694 0.8694 1.4501 0.5201 0.5225
200 B —1.0093 0.4158 0.4159 —1.0251 0.4112 0.4120 —1.0006 0.4033 0.4033 —0.9776 0.2554 0.2564
15 B 0.9989 0.0890 0.0890 0.9964 0.0885 0.0885 1.0001 0.0878 0.0878 1.0060 0.0733 0.0736
A 1.4341 0.6870 0.6902 1.4547 0.6777 0.6792 1.4257 0.6735 0.6776 1.4527 0.3899 0.3928
500 B —0.9669 0.3200 0.3217 —0.9762 0.3157 0.3166 —0.9631 0.3135 0.3156 —0.9755 0.1903 0.1918
B2 1.0009 0.0501 0.0501 1.0002 0.0498 0.0498 1.0013 0.0496 0.0496 1.0013 0.0444 0.0444
A 1.4848 0.3872 0.3875 1.4881 0.3842 0.3844 1.4854 0.3727 0.3730 1.4823 0.2374 0.2380
1000 B —0.9928 0.1807 0.1808 —0.9942 0.1794 0.1795 —0.9931 0.1746 0.1748 —0.9917 0.1175 0.1178
B 0.9983 0.0327 0.0328 0.9982 0.0327 0.0327 0.9983 0.0325 0.0325 0.9989 0.0312 0.0312
F() =1/(1 4 exp(—=x)), Xan = K100 -+ - Xn) ~ 1.5(I — 0.2W,)7'N(0, I), € iid ~ N(0, 1.5), B = (-1, 1)".

IV: use W, X3  as the IVs of W, S,,. 2SLS: use W, X, , and anXLn as the IV of W,;S,,. Repetition: 1000.

Table 2
Estimation results when F(x) = @ (x).
Xo n I\% 2SLS Optimal IV MLE
mean sd RMSE mean sd RMSE mean sd RMSE mean sd RMSE
A 0.9440 0.8297 0.8316 0.9837 0.8005 0.8006 0.9396 0.8084 0.8107 0.9185 0.5033 0.5098
100 B1 —0.9777 0.3403 0.3410 —0.9934 0.3288 0.3289 —0.9756 0.3321 0.3330 —0.9681 0.2233 0.2255
B2 0.9982 0.1041 0.1041 0.9957 0.1037 0.1038 0.9987 0.1040 0.1040 1.0048 0.0946 0.0947
A 1.0145 0.5857 0.5859 1.0367 0.5786 0.5798 1.0058 0.5678 0.5678 0.9717 0.3352 0.3364
200 B1 —1.0050 0.2208 0.2208 —1.0129 0.2184 0.2188 —1.0016 0.2154 0.2154 —0.9898 0.1389 0.1392
1 B 0.9989 0.0890 0.0890 0.9965 0.0885 0.0886 0.9998 0.0879 0.0879 1.0056 0.0733 0.0735
A 0.9558 0.4547 0.4569 0.9687 0.4477 0.4488 0.9514 0.4375 0.4402 0.9686 0.2524 0.2544
500 B1 —0.9820 0.1705 0.1715 —0.9867 0.1680 0.1685 —0.9804 0.1642 0.1654 —0.9866 0.1020 0.1029
B 1.0009 0.0500 0.0500 1.0002 0.0496 0.0496 1.0012 0.0491 0.0491 1.0013 0.0443 0.0444
A 0.9899 0.2563 0.2565 0.9921 0.2540 0.2542 0.9912 0.2470 0.2471 0.9901 0.1576 0.1579
1000 B1 —0.9961 0.0962 0.0963 —0.9969 0.0955 0.0955 —0.9966 0.0933 0.0934 —0.9963 0.0647 0.0648
B 0.9983 0.0327 0.0327 0.9982 0.0326 0.0327 0.9983 0.0324 0.0325 0.9988 0.0312 0.0312
A 1.4519 0.7725 0.7740 1.4862 0.7482 0.7483 1.4446 0.7556 0.7576 1.4258 0.4592 0.4651
100 B1 —0.9777 0.3641 0.3648 —0.9934 0.3532 0.3533 —0.9742 0.3563 0.3573 —0.9666 0.2326 0.2350
B 0.9984 0.1047 0.1047 0.9961 0.1043 0.1043 0.9990 0.1045 0.1045 1.0051 0.0946 0.0947
A 1.5147 0.5392 0.5394 1.5340 0.5335 0.5346 1.4975 0.5176 0.5176 1.4698 0.3010 0.3025
200 B —1.0059 0.2334 0.2335 —1.0138 0.2311 0.2315 —0.9988 0.2253 0.2253 —0.9876 0.1430 0.1436
15 B 0.9989 0.0891 0.0891 0.9967 0.0886 0.0886 1.0008 0.0877 0.0877 1.0062 0.0729 0.0731
A 1.4608 0.4113 04131 1.4703 0.4052 0.4063 1.4546 0.3994 0.4020 1.4716 0.2272 0.2290
500 B1 —0.9816 0.1785 0.1794 —0.9855 0.1759 0.1765 —0.9789 0.1734 0.1747 —0.9861 0.1059 0.1068
B 1.0010 0.0503 0.0503 1.0004 0.0499 0.0499 1.0014 0.0495 0.0495 1.0014 0.0444 0.0444
A 1.4906 0.2355 0.2357 1.4921 0.2322 0.2323 1.4904 0.2257 0.2259 1.4893 0.1433 0.1437
1000 B —0.9959 0.1021 0.1022 —0.9965 0.1009 0.1009 —0.9958 0.0985 0.0986 —0.9954 0.0675 0.0677
B 0.9984 0.0333 0.0333 0.9983 0.0331 0.0332 0.9984 0.0329 0.0329 0.9989 0.0314 0.0314

F(x) = @(X), Xon = Kin, -2 Xan)' ~ (I — 0.2Wp)TIN(O, I), € iid ~ N(0, 1), o = (-1, 1)".
IV: use W,Xs , as the IVs of W,,S;,. 2SLS: use WX, , and WnZXzn as the IV of W,;S,,. Repetition: 1000.

Table 1, when Ag = 1, we see that the standard errors of the We summarize the results when the error terms are not
simulated optimal IV estimators are greater than those of the MLE normally distributed in Tables 4 and 5. We can see that the biases
by 56% ~ 71%. of IV/2SLS/optimal IV estimators, but not MLE, decrease when the

(4) The RMSE of MLE is obviously less than those of IV/2SLS/ sample size n increases. This verifies that the normal distribution
optimal IV estimators. The reason is that the standard errors dom- of the error terms needs to be correctly specified for MLE but needs

inate biases. We can see that RMSE =~ s.d. not be so for the other three estimators.
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Table 3
Estimation results when F(x) = 0.5(x + +/x% + 4).
Ao n I\Y% 2SLS Optimal IV MLE
mean sd RMSE mean sd RMSE mean sd RMSE mean sd RMSE
A 0.3796 0.2418 0.2427 0.3910 0.2341 0.2343 0.3710 0.2294 0.2312 0.3616 0.1519 0.1567
100 B1 —0.9644 0.3828 0.3845 —0.9812 0.3713 0.3718 —0.9518 0.3645 0.3677 —0.9426 0.2668 0.2729
B> 0.9984 0.1047 0.1047 0.9959 0.1042 0.1043 1.0007 0.1036 0.1036 1.0074 0.0953 0.0956
A 0.3995 0.1637 0.1637 0.4044 0.1601 0.1602 0.3904 0.1531 0.1534 0.3862 0.1018 0.1027
200 B —0.9994 0.2253 0.2253 —1.0053 0.2209 0.2210 —0.9878 0.2164 0.2167 —0.9851 0.1596 0.1603
0.4 Ba 0.9993 0.0883 0.0883 0.9975 0.0873 0.0874 1.0027 0.0846 0.0846 1.0069 0.0743 0.0747
A 0.3848 0.1434 0.1442 0.3884 0.1404 0.1409 0.3813 0.1358 0.1371 0.3876 0.0830 0.0839
500 B —0.9752 0.2090 0.2105 —0.9803 0.2052 0.2061 —0.9703 0.1995 0.2017 —0.9802 0.1303 0.1318
B 1.0010 0.0498 0.0498 1.0003 0.0493 0.0493 1.0016 0.0486 0.0486 1.0016 0.0447 0.0447
A 0.3964 0.0817 0.0818 0.3969 0.0806 0.0806 0.3966 0.0787 0.0787 0.3955 0.0528 0.0530
1000 B —0.9926 0.1216 0.1219 —0.9933 0.1203 0.1205 —0.9929 0.1182 0.1185 —0.9918 0.0851 0.0855
B2 0.9984 0.0328 0.0328 0.9983 0.0327 0.0327 0.9984 0.0325 0.0325 0.9989 0.0313 0.0313
A 0.6874 0.1374 0.1380 0.6920 0.1329 0.1332 0.6755 0.1322 0.1344 0.6741 0.0856 0.0894
100 B —0.9698 0.3187 0.3201 —0.9793 0.3102 0.3109 —0.9449 0.3096 0.3145 —0.9461 0.2294 0.2356
B 0.9992 0.1066 0.1066 0.9974 0.1060 0.1061 1.0047 0.1050 0.1051 1.0099 0.0964 0.0969
A 0.6994 0.0866 0.0866 0.6998 0.0837 0.0837 0.6917 0.0783 0.0788 0.6904 0.0540 0.0549
200 B —0.9997 0.1759 0.1759 —1.0004 0.1714 0.1714 —0.9863 0.1675 0.1681 —0.9864 0.1333 0.1339
0.7 B 0.9996 0.0873 0.0873 0.9993 0.0855 0.0855 1.0049 0.0820 0.0821 1.0083 0.0738 0.0743
A 0.6906 0.0835 0.0841 0.6909 0.0803 0.0808 0.6864 0.0776 0.0788 0.6908 0.0491 0.0500
500 B1 —0.9785 0.1731 0.1744 —0.9791 0.1679 0.1692 —0.9703 0.1632 0.1659 —0.9798 0.1126 0.1145
B> 1.0012 0.0500 0.0500 1.0010 0.0490 0.0490 1.0024 0.0482 0.0482 1.0021 0.0449 0.0449
A 0.6973 0.0521 0.0522 0.6974 0.0498 0.0499 0.6963 0.0487 0.0489 0.6958 0.0334 0.0337
1000 B —0.9927 0.1077 0.1080 —0.9928 0.1040 0.1043 —0.9907 0.1025 0.1029 —0.9901 0.0765 0.0771
Ba 0.9986 0.0341 0.0342 0.9986 0.0337 0.0338 0.9988 0.0334 0.0335 0.9994 0.0319 0.0319

F(x) = 0.5(x + +/x* + 4), Xo.n = X1y - -

o X)) ~ (I — O'ZWH)_lN(Os In), € iid ~ N(0, 1), o = (=1, 1)".

IV: use W, X3 , as the IVs of W, S,,. 2SLS: use W, X, , and W,,ZXZ,n as the IV of W,;S,,. Repetition: 1000.

Table 4
Estimation results without normality (I).
€n n v 2SLS Optimal IV MLE
mean sd RMSE mean sd RMSE mean sd RMSE mean sd RMSE
A 0.8899 1.3429 1.3474 0.9520 1.3082 1.3090 0.8885 1.3088 1.3135 1.0533 0.7791 0.7809
100 B —0.9414 0.6312 0.6339 —0.9696 0.6166 0.6173 —0.9405 0.6170 0.6199 —1.0168 0.3906 0.3909
B 0.9957 0.1052 0.1053 0.9933 0.1044 0.1047 0.9959 0.1047 0.1048 0.9938 0.0927 0.0929
A 0.9798 1.0044 1.0046 1.0213 0.9954 0.9956 0.9676 0.9915 0.9920 1.1200 0.5496 0.5625
200 B1 —0.9892 0.4353 0.4354 —1.0066 0.4305 0.4305 —0.9843 0.4293 0.4296 —1.0487 0.2525 0.2571
MN B 1.0001 0.0933 0.0933 0.9975 0.0930 0.0930 1.0008 0.0924 0.0924 0.9931 0.0700 0.0704
A 0.9771 0.7424 0.7427 0.9981 0.7349 0.7349 0.9720 0.7245 0.7251 1.2491 0.4170 0.4857
500 B —0.9905 0.3175 0.3177 —0.9993 0.3146 0.3146 —0.9882 0.3103 0.3105 —1.1047 0.1875 0.2147
B2 0.9991 0.0494 0.0494 0.9984 0.0493 0.0493 0.9993 0.0488 0.0488 0.9908 0.0431 0.0441
A 0.9757 0.4956 0.4962 0.9907 0.4931 0.4932 0.9700 0.4912 0.4921 1.2656 0.2745 0.3820
1000 B1 —0.9884 0.2124 0.2127 —0.9946 0.2115 0.2116 —0.9860 0.2106 0.2111 —1.1093 0.1238 0.1652
B 1.0002 0.0352 0.0352 0.9996 0.0353 0.0353 1.0004 0.0352 0.0352 0.9898 0.0309 0.0325
A 0.8338 1.3304 1.3407 0.8887 1.2960 1.3008 0.8301 1.3020 1.3130 0.6718 0.8859 0.9448
100 B1 —0.9243 0.6099 0.6146 —0.9488 0.5944 0.5966 —0.9227 0.5958 0.6008 —0.8530 0.4233 0.4481
B2 1.0013 0.1032 0.1032 0.9991 0.1028 0.1028 1.0015 0.1023 0.1023 1.0126 0.0955 0.0964
A 1.0068 0.9336 0.9336 1.0362 0.9273 0.9280 0.9890 0.9000 0.9001 0.7447 0.6286 0.6785
200 B —1.0005 0.3966 0.3966 —1.0126 0.3935 0.3937 —0.9934 0.3825 0.3825 —0.8935 0.2763 0.2961
t(5) B 0.9991 0.0902 0.0902 0.9971 0.0903 0.0903 1.0003 0.0887 0.0887 1.0193 0.0798 0.0821
A 0.9422 0.7286 0.7308 0.9624 0.7195 0.7205 0.9353 0.7058 0.7088 0.7344 0.4885 0.5561
500 B1 —0.9723 0.3122 0.3135 —0.9807 0.3083 0.3089 —0.9693 0.3035 0.3050 —0.8861 0.2123 0.2409
B2 0.9996 0.0487 0.0487 0.9989 0.0486 0.0486 0.9999 0.0484 0.0484 1.0084 0.0465 0.0473
A 0.9984 0.4910 0.4911 1.0084 0.4884 0.4885 0.9952 0.4755 0.4755 0.7302 0.3187 0.4176
1000 B —1.0016 0.2066 0.2066 —1.0057 0.2055 0.2055 —1.0003 0.2006 0.2006 —0.8917 0.1401 0.1771
B 1.0003 0.0366 0.0366 0.9999 0.0365 0.0365 1.0004 0.0363 0.0363 1.0114 0.0333 0.0352

MN: mixed normal distribution: half probability N(6/+/17, 9/68), half probability N(—6/+/17, 9/68).

t(5): v/1.35t(5).

F(x) = 1/(1 + exp(—x)), Xo.n = X1n, - -

oy Xnn) ~ 1.5 = 0.2Wy)TIN(O, ), do = 1, fo = (=1, 1),

IV: use W,Xs , as the IVs of W,,S;,. 2SLS: use WX, , and W,szy,, as the IV of W,;S,,. Repetition: 1000.

5.2. Estimation with misspecified functional forms

Next, we consider consequences when estimating the model
with a wrong nonlinear F(-). The results are summarized in Table 6.
The models; ;, = F(Aw;_nSq+B1-+ B2Xin+€in) has true parameters

(Ao, B1o, B0, 00) = (1, —1,1, 1). We presume that in empirical
studies F(x) = (1 4+ e *)~! and F(x) = & (x) are most frequently
used, thus we focus on the estimation with these two functional
forms. But the true functional forms can be one of four different dis-
tribution functions: logit F(x) = (1+e*)~!, normal F (x) = & (x),
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Table 5
Estimation results without normality (II).
€ n \Y 2SLS Optimal IV MLE
mean sd RMSE mean sd RMSE mean sd RMSE mean sd RMSE
A 0.8725 13414 13474 0.9438 13077 13089 0.8676 13219  1.3285 09950 07751 07751
100 By —09375 0628 06319  —0.9698 06122 06130  —09349 06219 06253  —0.9950 0.3859  0.3860
B2 0.9962  0.1036  0.1037 0.9935  0.1033  0.1035 09965 01030  0.1031 0.9961 00930  0.0931
A 0.9563 09895  0.9904 0.9985 09810  0.9810 09382 09776  0.9796 1.0367 05673  0.5684
200 B; —09811 04298 04302  —09986 04258 04258  —0.9738 04238 04246 —1.0157 02609  0.2614
u B 1.0032  0.0916  0.0917 1.0004  0.0914  0.0914 1.0042  0.0906  0.0907 09999 00710  0.0710
X 09915 07217 07218 1.0130 07152 07153 09901 07019  0.7020 1.1477 04170  0.4424
500 By —09947 03102 03102 —1.0037 03076 03076  —0.9940 03019 03020 —1.0601  0.1891  0.1984
B2 0.9994  0.0481  0.0481 0.9987  0.0481  0.0481 09995  0.0476  0.0476 09950  0.0435  0.0438
A 09778 05006 05011 0.9920 04991  0.4992 09733 04919  0.4926 1.1602  0.2943  0.3350
1000 B, —09890 02127 02130  —09949 02121 02121  —0.9871 02093 02097  —1.0648  0.1301  0.1454
B2 1.0000  0.0360  0.0360 0.9994  0.0360  0.0360 1.0002  0.0359  0.0359 09935 00314  0.0321
X 0.8712 13419 13481 09355  1.3121 1.3137 0.8627 13392  1.3462 1.0036  0.8063  0.8063
100 By —09275 06325 06367 —09568 06181 06196  —09234 06320 06366  —0.9904  0.3983  0.3984
B2 0.9989  0.1041  0.1041 0.9965  0.1039  0.1039 09993  0.1040  0.1040 09979  0.0925  0.0926
A 0.8904  1.0185  1.0244 0.9257  1.0029  1.0056 09200 09809  0.9842 1.0881 05741  0.5808
200 B; —09846 04338 04341  —09991  0.4261 04261  —09969 04181 04181  —1.0660 02625  0.2706
B B2 1.0111  0.0906  0.0912 1.0089  0.0907  0.0911 1.0091  0.0891  0.0896 1.0005  0.0739  0.0740
X 0.9809 07071  0.7073 1.0063  0.6992  0.6992 09761 06901  0.6905 12218 04036  0.4605
500 B, —09917 03027 03028  —1.0023 02992 02992  —0.9894 02963 02965 —1.0928  0.1823  0.2045
B> 1.0003  0.0495  0.0495 0.9995  0.0494  0.0494 1.0005  0.0493  0.0493 09929  0.0449  0.0454
A 0.9944 05013 05013 1.0080 04962  0.4962 09930 04942  0.4943 12086 02785  0.3479
1000 B, —09981 02113 02113  —1.0038 02093 02093  —09975 02087 02087 —1.0870 0.1223  0.1501
B2 0.9995 00342  0.0342 0.9990  0.0341  0.0341 09995  0.0340  0.0340 09920 00297  0.0308
U: 1.5U(—+/3, v/3); B: V18(B(, 1) — 0.5).
F(x) = 1/(1 4 exp(—=x)), Xon = K105 -+ - X)) ~ 1.5 — 0.2W,)TIN(0, In), Ao = 1, fo = (=1, 1)".
IV: use WX , as the IVs of W,,S;,. 2SLS: use WX, , and anXln as the IV of W,;S,,. Repetition: 1000.
Table 6
Compare F is logistic and standard normal distributions.
True F Logit Normal
Estimate with Logit Normal Logit Normal Logit Normal Logit Normal
2SLS MLE 2SLS MLE
N 0.9536 0.5391 0.9546 0.6167 2.0612 0.9619 0.6985 0.9675
(0.5818) (0.3305) (0.3339) (0.1936) (1.0499) (0.4654) (0.5493) (0.2553)
8 —0.9821 —0.5603 —0.9820 —0.5906 —2.0640 —0.9867 —1.5701 —0.9882
! (0.2339) (0.1327) (0.1407) (0.0814) (0.3971) (0.1747) (0.2177) (0.1040)
P 1.0012 0.5706 1.0023 0.5677 2.1124 1.0013 2.1941 1.0022
2 (0.0497) (0.0275) (0.0452) (0.0247) (0.1255) (0.0498) (0.1248) (0.0450)
True F Laplace Cauchy
Y 1.2194 0.6691 1.5876 0.9544 0.7528 0.4456 1.0785 0.6241
(0.6455) (0.3617) (0.3678) (0.2096) (0.5239) (0.3144) (0.3098) (0.1859)
8 —1.2668 —0.7017 —1.4035 —0.8078 —0.7998 —0.4750 —0.9298 —0.5462
! (0.2476) (0.1384) (0.1499) (0.0850) (0.2126) (0.1275) (0.1305) (0.0783)
P 1.2835 0.7091 1.2654 0.6947 0.8136 0.4830 0.8007 0.4760
2 (0.0618) (0.0340) (0.0552) (0.0302) (0.0391) (0.0234) (0.0348) (0.0209)
Xon = (x1,na ey Xn,n)/ ~ (In - 0-2Wn)71N(0y In)- € iid ~ N(O» ])- ()"05 /510» ,620) = (]a -1, 1.
2SLS: use W, X5, and anxz_n as the IV of W,;S,,. Sample size: 500. Repetition: 1000.
Laplace F(X) — l(X < O)BX/Z + 1(X > 0)(1 _ efx/z)v and Cauchy Self Marginal Effects Estimated by Different Models
F(x) = % + % arctan x. All these transformations are nonlinear and = ‘ ' ' ‘
thus the estimates of coefficients in Table 6 would be different from g 08 ‘
the true ones. Instead of comparing estimated coefficients across £ os L
model specifications with various transformations, it may be more El 04
appropriate to compare implied marginal effects. § ' L
Figs. 1-4 illustrate differences in the implied marginal effects 5 03¢ o 1
based on estimated models with those derived from the exact ones g 02, ¥
. . . . . = S T S0 D B WA 1) 00 SIMCoTY CEoT @®E 0o
(with true coefficients). When the true F(-) is either the logit or & o A
normal distribution function, the marginal effects are not far away ~
from each other regardless of whether the specified transforma- o 01 0.2 03 04 05 06 07
tion used is F(x) = (1+e*) "' or F(x) = @ (x). Butif the true F(-) true Marginal effect
is the Laplace distribution, then & (x) gives much worse marginal
effects than those from the logit (1+ e,x),1 . This can be explained Fig. 3. Self marginal effects when true F(-) is the Laplace distribution function.
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Self Marginal Effects Estimated by Different Models
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Fig. 4. Self marginal effects when true F(-) is the Cauchy distribution function.

Prediction by Different Models: F(x)=1/(1+exp(—x))

e

Estimated Dependent variable
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true dependent variable

Fig. 5. Prediction when F(x) = 1/(1+e™%).

by the tail behavior of these distributions: the tails of Laplace dis-
tribution and logit are similar while & (x) has much thinner tails.
When F(-) is the Cauchy distribution, the marginal effects from
both F(x) = (1 4+ e~ !and F(x) = ®(x) are imprecise, even
though F(x) = (14e7*)~! gives slightly better estimation. Perhaps
that is because Cauchy has much fatter tails than the logit distri-
bution, while the tails of the normal distribution are the thinnest.
Figs. 1-4 are generated from MLE. 2SLS estimation, different sam-
ple sizes and parameters have been tried in the experiment, and
the corresponding figures are very similar. '

5.3. Testing functional forms

In this section, we conduct some Monte Carlo experiments on
the finite sample performance of testing the specified F(-) trans-
formation as suggested by the end of Section 4. In the experiment,
Sin = F(Awi_ nSp+ B1+ BaXain + B3x3in +€in) has true parameters
()\.0, ﬁ]o, ﬂzo, 530) = (1, —1,0.5, 05) and €in is i.i.d. N(O, 072)
The designs of the regressors x,;, and x3;, are described under
Table 7. Both the sample size and the number of bootstrapping
repetitions are 500, and the Monte Carlo repetition is 1000. The
true parameters are chosen such that there are few computational
problems such as ill-conditioned matrices. We obtain the critical
value (one-sided test) of the 5% level of significance. From Table 7,
we see that the frequencies of Type I errors are between 5.2% and
6.8%, which are close to the 5% errors. However, from Table 8, the
powers for most tests are not large. This is especially true for dis-
tributions that have certain similarities, e.g., the power of testing

11 Those additional results are presented in the supplement file (see Appendix C).

Table 7
Size of test between different transformations.
H;
Cauchy Laplace Logit Normal Extreme
H Logit 6.3% 6% - 5.2% 5.6%
0 Normal 5.2% 5.9% 6.8% - 5.3%
Xon = (X21,ns cees XZn,n)/ ~ 1.5, — O-ZWn)ilN(O’ In), X3 = X310, - -+ x3n<n)/ ~
N(O, I),
€ iid ~ N(0, 0.72), (Ao, Bio. Bao. B3o) = (1, —1,0.5,0.5).
Use Wy Xa.n, WyXs 0, W2Xz 5 and W2Xs , as IV.
Bootstrap: 500 times. Sample size: 500. Repetition: 1000.
Table 8
Power of test between different transformations.
H;
Cauchy Laplace Logit Normal Extreme
H Logit 48.5% 12.1% - 5.5% 63.3%
0 Normal 57.6% 23.8% 9.7% - 41.6%
Xon = (X21,m5 - -+ X2n.n)/ ~ 1.5(I, — O-ZM/H)ilN(Ov In), X350 = X310, - -+ X3n.n)/ ~
N(O, I),

€ iid ~ N(0, 0.7%), (o, Bro, a0, B3o) = (1, —1,0.5,0.5).
Use WyXa,n, WnX3.n, W2Xp 0 and W2X; , as IV.
Bootstrap: 500 times. Sample size: 500. Repetition: 1000.

logit F(-) vs normal F(-) is 5.5% and the power of testing normal
vs logit is 11.7%. Laplace F(-) and logit F(-) also have similar be-
haviors, and the power of testing logit vs Laplace transformation
is 12.1%. If two distributions are quite different, then the powers
are large. For example, Cauchy F(-) has fat tails but normal F(-) has
thin tails, and the power of testing logit vs the Cauchy transfor-
mation is 57.6%. We have also examined the relationship between
powers and variances of x; , 8o + €; . From Table 9, we see that as
we raise the variance of x; ,8p + €, powers increase for all test
except testing logit against Laplace. These phenomena can be ex-
plained by the tail behaviors of these distributions: the tails of logit
and Laplace distributions are the same, except the scaling factor 2;
but the tails of other pairs are of different thickness. When the vari-
ance of x; n o + €; 5 increases, more data are located at the tails of
these distributions, then it will be easier to differentiate two F(-)’s
if their tails are more different and it is harder to differentiate them
if their tails are similar.

6. Conclusion

In this paper, we consider a generalization of the linear SAR
model to a nonlinear one with a strictly increasing nonlinear trans-
formation function. After establishing the NED property of the de-
pendent variable and relevant functions, we show the consistency
and asymptotic normality of the ML estimators with normally dis-
tributed errors. To consider the case where the distribution of er-
rors is unknown, we also consider IV and 2SLS estimation. Monte
Carlo experiments verify our theoretical results in finite samples.
The experiments also show that MLE is more efficient relative to
the 2SLS estimation.

Our models can be extended in several ways. First, we have not
considered heteroskedasticity in our model. As the MLE is generally
not consistent for the estimation of the linear SAR model with
unknown heteroskedasticity (see Lin and Lee, 2010), we expect
that the MLE for a nonlinear SAR would also be inconsistent, if
unknown heteroskedasticity were ignored. Thus, it would be of
interest to study the nonlinear SAR model with heteroskedasticity.
Second, it would also be interesting to generalize our model to
panel data. Many results have been obtained for the estimation of
linear spatial panel data models (see, e.g. Lee and Yu, 2010), but the
research on nonlinear spatial panel models needs to be developed.
Third, our model depends crucially on the Lipschitz property of
F(-), which gives NED property of the dependent variable and other
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Table 9
Power of test.
Bo P o0 Ho H, Ho Hy Ho Hy Ho H, Ho Hy
Normal Logit Normal Laplace Logit Cauchy Normal Cauchy Logit Laplace
05 05 07 9.7% 23.8% 48.5% 57.6% 12.1%
0.7 0.7 0.9 11.7% 28.1% 56.1% 64.9% 12%
1 1 1 16.7% 33.2% 66.9% 74.5% 11.4%
15 15 15 21.5% 38.2% 75.3% 81.6% 10.4%

The first row of values duplicates some results in Table 8 for easier comparison.

Xon = X205 -+
€ iid ~ N(0, 63), (ho, B1o) = (1, —1).

Use WyXa,n, WnX3.n, W2X5, 0 and W2X;  as IV.

Bootstrap: 500 times. Sample size: 500. Repetition: 1000.

variables. However, some nonlinear transformation functions in
certain models, such as step functions for binary choice models, do
not satisfy the Lipschitz property. More work needs to be done in
this area. Finally, in empirical applications, we may not know the
functional form of F(-). Thus it would be useful to generalize the
model to a semiparametric one.
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Appendix A. Some useful lemmas

Lemma A.1 (A Direct Generalization of Corollary 4.3(b), Gallant and
White, 1988). If for all i and n, ||Yinll2r < A < oo and ||Zipll2r <
A < oo for somer > 2, ”an — ElYinlFin@®]1l2 < diyp®
and ||Z; , — E[Zln"?; n)]ll2 < dizap®, then ||Y; nZi n — E[YinZi | Fin
()]l < din* Where dyy, = 207210 (5 d ) =272
AG=2/2r=2) and p = ,o(r 2)/(2r-2) . Specifically, if {Y; .} and {Z; .}
are both uniformly L,, bounded and uniformly and geometrically L,-
NED, then {Y; nZ; »} is still uniformly and geometrically L,-NED.

The proof of the above lemma is almost the same as that of
Corollary 4.3(b) in Gallant and White (1988), thus we omit it here.

LemmaA.2. If {Xi1.}, ..., {Xixa} are KL,-NED random fields on
{6, )iy, for each i, define Z; , arbitrarily as one among {X; 1, . . .,
Xikn}, then {Z; ,}L, is also L,-NED.

E(Xz]n|$'! n(m))”p < tjnwj(m)‘ we have
max; d; j, max; yj(m). O

Proof. Because ||X;j,
”Zz n E(Zl n|-7‘~l n(m))”p

LemmaA.3. If {Xi1}, ..., {Xixm} are kL,-NED random fields on
{€in} such that ||X;jn — E[Xi ] Fin(mM]|l < dijny(m), then {Z;, =
X?1n + -+ -+ X2y, ) is Lp-NED such that ||Z , — E[Z; | Fin(m)]]| <

(Z dij) W (m). If {Xi1n), ..., {Xika} are k uniformly and geometri-
cally L,-NED random fields, then {Zi n} is also a uniformly and geo-
metrically L,-NED random field.

Proof. The Euclidean distance function

||(X1» Xl

1. Then the conclusion comes from Theorem 17.12

| S

in Davidson (1994). O
Appendix B. Proofs

B.1. The proof for Section 2

Proof of Proposition 1. Denote the right hand side of Eq. (2) as
H,(S,). First we will show that H, : R" — R" is a contraction

Xonn) ~ 1.5(I, — 0~2Wn)71N(0y In), X3n = (X310, -+

x3n,n)/ ~ N(O, In)v

mapping. Because

M (AW S + X108 + €1) w1,
8Hn(sn) 1-,n°n .111,3 1 1-,n

as

A Awy. nSp + XnnB + €)Wn. n

it follows that | 0Hy (5)/3S"[loc < A SUPi_y__p f(hwi,nSn+%i.uB +
€in) [Walloo < [Albr[[Whlloo < ¢ < 1, where || - || represents
the infinite vector norm. By the mean value theorem, we have
H; 2 (51) — Hja(S2) = M(51 — S,) where S lies between S;
and S,. Therefore, ||H,(S1) — Hn(S2) oo < C1IS1 — S2llc0, i€, Hy is @
contraction mapping. Since R" is a complete metric space, there is
exactly one fixed point for the contraction mapping H,. O

Proof of Lemma 1. First, we consider the solution of the system
of equations: SO = F(AoW,S?). By mean value theorem, S¢ =
F(0)tn + hafp, WaS2, where 1, = (1,...,1) and fp, is a diagonal
matrix with its jth diagonal element f(t;) for some tj between 0
and Aowj. ,S2. Then SO = F(0)(I, — Aafp, W)~ 't Because ||(I, —
XobtWa) oo = I Xie(hobsWa)'lloe < 1/(1 — &), we have
IsP,l < [F(O)]/(1=2).

Second, we consider the equation S, = F(AoW,,S, + n,). Then
ds, = (I, — Aafp, Wn)*lfDndnn. As elements of W, and fp, are non-
negative, (I — Aofp, Wa) "Up, <* My, = (myn) = by(Iy — |Aolby
W,)~!, where <* means the inequality applied to the absolute
value of pointwise entries of the two matrices. Thus S, is a Lipschitz
function of n,. Apply this conclusion to S, = F(A oW, S, +X,, Bo+€n)
and denote its solution as S,(¢;). Then S,(0) is the solution of
Sn = F(AoWhiS; + X, 80). Because ||My|loo < br/(1 — ¢), we have
150 (0)] < I, + Mnlloo [Xi.nBol < (IF(0)] + bylxinBol) /(1 = ©).

! I

Third, ]_[ L Eleali = 1_[}1:1 ||6j,n||1j- < }1:1 l€jnlli 1.ty =
E|€jq|''*FIn by Lyapunov’s inequality. Then, with the multinomial
theorem (Sheldon, 2009), we have

)

_ p! I
=E 3 g meed

Li+-+lh=p

p!
Z L1,

n
li I;
7 [T imyalEleal
li+-+l=p =1
n
[T imyalbEley ol
111

N

p!
Z LYo,

li+-+p=p 1

p

n

= Elerql” (Z |my,n|> < BPEleral/(1 = O)P.
j=1
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Finally, because [s; ,(€;) — $in(0)] < Z]'?:l |mjj n€;j nl, it follows
by the C.-inequality (Shorack, 2000, p. 47) that

E[|5i,n(5n)|plxn]

n p
<E [<|s,~,n(0)| +y |mz-,».nej,n|) m}

=1

n p
<2 [E(|si,n(0)|'3|xn) +E (Z "”ffﬂff’"') }

j=1
< 27 M[(IF(0)| + by |xinBo)? + bfEleralP1/(1 = ¢)P.

Then it is clear that sup; , E[|s;n(€n)|[P] = sup; , E{E[|sin(€n) [P1Xn]}
< 00 since sup; i, | Xiknllp < 00. O

Proof of Proposition 2. Denote S,ﬁ” = F(\ oW, ,ﬁ” +X,§1) Bo —I—Gr(,” )
and Sflz) = F(A oW, flz) +X,(,1),80 +e,§2)). From the proof of Lemma 1,
we have |s,4(,1n) — sfzn) | < Z;;] mi]-,nl(x;’ln) — xj(,z,f)ﬂo + (ej(},) - eﬁ))L
where (mij.n) = bf(ln - |)L|ban)7]- Thenv lIsin — E(Si,n|~¢i,n
(mdo))ll2 < lI5in — EGinlXinBo + €, d(, 1) < mdo)ll2 < (00 +
I Bollt Sup; in 1Xiknll2) 2. iy ma Mij.ne Where the second in-
equality comes from Proposition 1in Jenish and Prucha (2012) and
Minkowski’s inequality. Under Assumption 2, we know (W,i)ij =0
ifd(i, j) > mdy while I < m. Hence, the conclusion follows from

Y mya=br Y (a— bWy}

jid(,))>mdg jid(,)>mdg

=b > > (bW}

jid(G.h>mdy 1=0

=b Y Y (rlbWj

jid(,i)>mdg l=m+1

=b Y Y (rbWy)

I=m+1j:d(,i)>mdq

o0
< b D IAbWalll, < bg™'/(1—¢). O

I=m+1

Proof of Corollary 1. Because s; , is uniformly L, bounded and W,
is uniformly bounded in row sums, {w;. Sy}, is uniformly L,
bounded. Notice wj;, 7 0 only if d(i, j) < do. Then

” wi»,nsn - E(wi-,nsn | %,n (me)) ” 2

> winlsin — EGSjnlFin(mdo))]

=

2
<Y wiinllsin — Elsal F.a((m = Ddo)]1ll2
j=1
00§m+1
)hm(] - {) '

where the second inequality comes from Proposition 2. O

< (o0 + || Boll1 sup lIxik,nll2)
ik,n

B.2. Proofs for Section 3
Proof of Lemma 2. We know thatIlnx < x—1foranyx > 0, which

means In 4/x < +/x — 1. Therefore, Inx < 2(4/x — 1) for any x > 0.
So we have

E1n(Ly (6)/L0(60)] < 2E (V/1r(0) /L (@) — 1)
=2 f (VEa(®)/La80) — 1) Ln(Bo)ds;,

2 ( / @)Ly (Bo)dSs — 1)
- f (VL@ ~ V@) | ds, <0, (15)

This implies in particular the information inequality that EIn L, (0)
< EInL,(6p) for all 8. Thus 6, is a maximizer. Eq. (15) also implies
that if EInL,(#) = ElnL,(6y), L,(6) = L,(6p) almost surely (see,
e.g., Van der Vaart, 1998) We claim that 6, is the unique maximizer
as follows. Because EInL,(6) = EInL,(6p) implies L,(0) = L,(6p)
almost surely, we analyze the equation InL,(#) — InL,(6g) = 0
with variable T, while X, and parameters are fixed. For any square
matrix A, denote p(A) the spectral radius of A. From spectral radius
theorem, we have p(W,;Wp) < [W, Wy oo < [Walloo Wy lloo < C?
for some C > 0. Thus C2I,, — W, W, is positive semi-definite. Hence
by Cauchy’s inequality,

[T, WaF (T

inf|tj |00 TT,
1

I (TyT) V2 [F (To) Wy Wi F (T,) ]2

inf |¢; |00 T)T,
1

<

<C lim  (T)T,) " V2[F(T,) F(T,)]"2

inf[tj n|—00
1

=C lim

n n 1/2
F2(t; t?

<C lim [ max F*(t;,)/t3,1"* =0,
on ’

inf|t; n|—>o00 i=1,..
1

where the last equation follows from lim,_, ;o F(x)/x = 0. App-
lying Cauchy’s inequality again, we have lim SUPT/ T, 00 T, XnBol/
(TyTo) < limgyp oo (TrTn) ™2 (BoXXaBo)/? = O.Forany A € A,
p(Mp,Wn) < lIAfp,Whlloo = ¢. Denote the characteristic values
of fp, W, as A;'s. Because A; € R,weobtain1 —¢ < 1 —2AA; <
14 ¢ and In|l, — Afp,Wa| = InJ]L,(1 =A%) € [nIn(1 — ¢),
nin(1 + ¢)]. By liminfi [tj nl—>o00 T,;WnF(Tn)/(Tr/lTn) =0 limT,’]Tn%oo
T, XnBol/(T;T,) = 0and In [I, — Afp,Wy| € [nIn(1 — &), nIn(1 +
¢)], we have oy = o because

0= lim [InL,(0) — InLy(60)]/(T.Ty)

inf|tj n|—o0
i

= lim
ir)f\t,-y,,|aoo
1

x :_ [Tn - AWnI:(Tn) - Xnﬂ]/[Tn - )\WnF(Tn) - Xn/s]

202T!T,
+ [Tn - }\OWnF(Tn) - Xn,BO]/[Tn - )LOWnF(Tn) —Xnﬂo]
208T)T,
+ In I, — Afp, Wn| — In |I, — Aofp, Wh|
T/T,
= (0% — 07 %)/2.

Because F~1(S,) — AW, S, —Xu B = €5+ (Ao — A)W,iS, +X,n (Bo —
B) = en+ (Ao — MW, (Sp — ESp) + [(Ro — AWRES, + X, (Bo — B)],
we have

E[(F'(Sn) — AW,Sp — XuB)'
x (F71(Sp) — AW,S, — XuB)]
=nog + (ho — A)’E[(Wa(Sa — ESn))’
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X (Wi (Sn — ESp)]1 + 2(ho — A)E(e'W,Sp)
+ E{[(Ao — M)WLES; + Xn(Bo — BT
x [(ho — M)WLES, + Xn(Bo — B)1}
= (ko — M)’EL(Wa(Sy — ESp)) (Wa(Sy — ES))]
+ 20Etr[(ho — A) (fo, — AoWn) ™ W]
+nog + E{[(ho — MW,ES, + X, (Bo — B)T
X [(ho — MWHES; + Xq (Bo — A1},
where the last step is from the first order condition E(e,W,,S,) =
o2E[(fp,! — hoWn)~'W,]. Because (f, ' — AoWy) 7' (f,! — AW,) =
In + (ko = M (fy," — 2oW,)~'W,, we have

2

n o no?2 n

ElnL () —EInL. () = [ —1n % — —9 4 —
n( ) n( 0) <2 02 20_2 + 2)
+EIn |l + (ko — M), — AoWy) ™ W]

2

U _
—ZEt[(ho — M) (! — AoWa) ™ Wil

(Ao — 1)? ,
- TE[(Wn(Sn — ESp)) (Wi (Sn — ESp))]

1
aEy ——E{[(ho — MWLES, + Xa(Bo — )T
X [()LO - )\)WnESn +Xn(/30 - /3)]}

_n(% % _
2 \ o2 o2
”Q

02
- tro—‘;[ln + (o — V(" — RoWa) ' Wyl + n)

102[1 + (o = My — AW~ Wy ]
P 0 Dn 0VVn n

_Go— 2

2 E[(W (Sn - Esn)) (W (sn - Esn))]
o2

= L E{[(ho = WAES, + Xa(Bo — BT

20 2

X [(Ro = MWRES, + Xa(Bo — B)1}. (16)

Because I + (ko — 1) (fy, ' — 2oWa) ™' Wy = (I — Aafp, Wa) ™" (In —
Afp, W), the characteristic values of I+ (Ao —A) (fy, ' — Ao Wa) ™' W,
is ] “‘ . For any A, [AAi| < [Albf|[Willeo < 1. Therefore, 1 —
|x|bf||w,1||oo < 1—Ax; < 1+ |Abf||Wy | oo. Thus, the ratio 11—_;;{14
is bounded from above and bounded away from zero as

1 — |Albf[[Walloo
1+ [holbf[Walloo
1+ |Albf Wil oo

= 1= [Rolbr [Walloo

1— XA
1 — AoAi

(17)

When the characteristic values of an n x n matrix A are all positive,
then In |A| < tr(A) — n with equality only when all characteristic
values are 1. As all the characteristic values of fp, W), are real, Eq.

2
(17) implies that all characteristic values of Z—% [+ (hog—A) (fD_n1 -

0'2 o .
AW IW, ] = [T%(fD_nl — )L()Wn)*l(fD_nl — AW,) are positive. Then

aso? = o, EInL,(0) = ElnL,(6p) must imply that A = Ao and
B=pH. O

Proof of Lemma 3. From the proof of Lemma 2, we know that if
EInL,(®) = EInL,(6), we have L,() = L,(6) almost surely, i.e.,

n
——Ino?
2
_ [Tn - )\WnF(Tn) - Xn,B]/[Tn - AWnF(Tn) - Xn,B]
202
+ In |l — Afp, Whl (18)
18
n
= —5 In 0'02
_ [T - )\OWnF(Tn) - Xn,BO Tn - )VOWnF(Tn) —Xnﬁo
200

+ In I, — Aofp, Wl

holds for T, almost surely.
Differentiate Eq. (18) with respect to ¢ ,, we have

o2 |:tk,n — Awg. oF (Ty) — XnB — M (tin)

X Z(ri,n — Aw;. o F(Ty) — Xi,nﬁ)wik,ni|
i=1
- )‘f/(tk,n)tr[(ln - )\fDn wn)ilm]

= 00_2 |:tk,n - )‘-Owk,nF(Tn) - Xk,n,BO - }\Of(tk,n)

n
X Z(fi,n — Aow;. o F(Ty) — Xi,n,BO)wik,n:|
i1

— Aof () trl(Iy — Aafo, Wa) ™ Wien], (19)

where wy. , is an n x n matrix whose entries are zero except that its
kth row is identical to the kth row of W;,. Differentiating the above
equation with respect to t; 5, j # k, we get

o2 |: — Awijnf (G,n) — Awikf (te.n)

n
+ 22f (tnf (G0 ) wij,nwik,n}
i=1

= 22f (en)f (Gt (I — Mfp, W) ™"

X wj'q”(ln - )\'fDan)71wk<.n]

= 0072 |: - )‘Owkj,nf(tj) - Aowjk,nf(tk,n)

+ )‘(Z)f(tk,n)f(tj,n) Z wij,nwik,ni|
i=1

- }\éf/(tk,n)f/([}',n)tr[(ln - )LOfD,1 Wn)_l
X Wi (ln — Aafp, Wa) ™ Wicn .

Let t; , be such that f'(tj ,) = 0 and f (tj ;) # 0 (t;,, may be +o00
or —oo). Then the above equation implies

o2 |: — Awygnf (&.0) — AWjenf (tk.n)

n
+ 2f (tnf (6.0 Y wi,»,nw,-k,n}
i=1
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=0y [—howii.nf (&) — Aowjenf (tn)

+ )h?;f(tk,n)f(tj,n) Z wij,nwik,ni| . (20)
i=1

First, consider the case F(-) is not a linear function, i.e., f(-) is
not a constant. Notice that both sides of the above equation are
linear equations of f(t ), so their constant terms are the same:
Awiinf (t,n) /02 = howijnf (8 n)/0Z. Because W, # 0 while its
diagonal elements are all 0, there exist k and j such that wy; , # 0.
Asf(tj) # 0, thus A /o = Lo/o¢. Then Eq. (20) implies

22f (ten)f (8.0) Z Wi n Wik n /0
i1

= )\éf(tk,n)f(tj,n) Z wij,nwilc,n/aoz'
i=1

Therefore, A% Y"1 | wijnWikn/0% = A2 Y 1L, WijnWikn/0F. Sum-
mation over k and j, we have A2 Zj¢k(Wan)Jk/o = A D iu
(W, Wp)ji/0g. As W, W, is not a diagonal matrix, 2> /% = Aé/ag.
Combining /0% = Ag/0Z, we obtain A = A9 and o = 0.

Second, consider the case that F(-) is a linear function. Without
loss of generality, assume F(x) = x. Then f (x) = 1 and Eq. (19) can
be written as

0 [Ty — AW Ty — X B1 (I — AW)
= 0 2[To — AoWaTy — XaB1 (In — AoWa).

Notice that both sides are linear equations of T, thus their “slopes”
are the same: o ~2(I, — AW,) (Iy — AW,) = 0 >(In — koWn)' (I —
LoW,). Therefore,

(Wo™2 = Moy HWIW, —
X (W, +Wy) + (072 — o5 DI, = 0. (21)

(ro7? = )»00072)

Consider the diagonal elements: ( %02 — A
-2

300 Y WyWa)ii +
(07 — 00’2) = 0 for all i. Since (W, W,);s are not all the same,
we have 2202 = 120, and 0 =% = o, . Now consider the off-
diagonal elements of (Ao —2 — Aoog2)(w,; + W,) = 0. Because
W, # 0 and its elements are non-negative, we obtain Ao 2 =
Aooo_z . Hence, we can identify A¢ and oy when F(x) = x.

Hence, Eq. (16) implies EInL,(#) — EInL,(6y) = —ﬁE[(ﬁo —
B)' X, Xn(Bo — B)] = 0, which can hold only if o = 8. O
Proof of Proposition 3. (i) From the discussion after Corollary 1,
{tin} is uniformly and geometrically L,-NED with v (mdg) = ¢™.
Because f (x) is a Lipschitz function, we have that f; = f(t;) is also
uniformly and geometrically L,-NED: ||fi—E(f;| Fi..(mdg)) | < CZ™
for some constant C > 0. Denote iy = i. Then with the inequality
|XoX1 - X —Yoy1- -yl < b} Zf:1 |x; —yi| when all x;’s and y;’s are
in [—by, br], we have

”fLﬁ]ﬁz o 'ﬁ[ - E[flfhﬁz o
1 l
[15 - [ [ Bl 1 Fin(mdo)]
j=0 j=0
1

<Y Iy -

=0

Syl Fin(mdo)]|l2

<

2
ELf; | i (mdo)]ll

1

<bp Y Ify — ELfy | Fja((m — j)do)]l2
=0

.
|

< b}c(;m+§m7] + _.+é.m—l)
ce™'=1
= b e : (22)

(ii) For any given small positive number € > 0, we can divide
the summation in Eq. (7) into two parts (I < Ko & [ > Kp), where
the fixed natural number Ky will be determined later. We will show
that the first part converges to zero uniformly and the second part
can be bounded by €/2.

To show the convergence of the first part, we only need to
calculate its variance. By Lemma A.2 and Eq. (22), we know that
for any location i, arbitrarily pick a natural number | < Ky and
locations jq, ja, . .., ji_1 such that d(i, j;) < do and d(ji, jn—1) < d
forall2 < h < | then {ffj, ---f;_,} are L,-NED: |Ifify, - - - f,_, —

K
E[fifi, - - fio | Fin(mdo)]ll2 < Owg for some constant

C > 0."” So by Lemma A.3 in Jenish and Prucha (2012), if locations

i — j, = j, — ---j_; also satisfy that d(',j;) < do and

d(y,jn_1) < do forall2 < h < I, then there exists a constant
s
G > 0s.t.[cov(fify, -« fiy fufy - fy DI < Gy da/3,
n
Denote gu = DD 2, WinaWisn " Wi in

(Fifyy -+ iy — Efifyy -

1
Var <fgnl>

S n2 ZZZZ ZZZ Zw,hnw]mn...

i=1i=1 j1 J2 =1 § Ji—1

-fi_,). Then we have

X Wjp_yi;n Wy, nWirj, n

X wy ,-,_,,|cov(flfj1 .

Siae Fify )

\nzggcgd(u)mz ;]Z

1

X Zwij],n...
J':’q

o 2! chgd(u)ﬂ

i=1 i’=1
Define N;j(1,1,m) = {j : (m — 1)dg < d(i,j) < mdp}. Be-

cause all the positions are in RY, there exists a constant Cs such
that |N;(1, 1, m)| < Csm?~! from Jenish and Prucha (2009). Then

Dt X C2§d(”)/3 < Yl Yoy GmATIGE DB = o(n)
asY o Csm*1C¢ MV/3 < oo, This shows that 1g, (1) = 0,(1).

The uniform convergence sup; 4 |% Zﬁ’] gurl/l] = 0p(1) holds
because A appears as a polynomial.
Now we consider the proof of the remaining part where | > Kj.

BT

Wji—qinWify o= Wi i on

I=Ko+1
- E E E E Wijy ,nWiyja,n * *
l Ko+1 i=1 j; Ji—1

ijl 1fﬂlf"-ﬁ'1"'fjl 1_Efif11"'ﬁz 1|

||Aw I ¢!
- Z — b < Z T

l Ko+1 I=Kp+1

12 Yere without loss of generality, we assume by > 1.
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2 ;Ko«H €

—_— <
T Kel—¢ 2

2 o0
o2

so long as K, > K. for some positive integer K. with
2¢KeF1K=1/(1 — ¢) < €/2. Notice that K, does not depend on the
sample size n. Then
> e)

< 1
P|sup|—
realnl

Ko 00
(sup \nguwr > gnzm\ > e)

I=Kop+1
sup —
rea

‘Zgnl()»)‘ +SUP l Z gnz()»)‘ > e)
1
g (i‘éi’n

I=Ko+1
asn—oo. 0O

In |In - }‘-fDn Wn| —Eln |In - )\fDn

TR e/2> ~0,
=1

Proof of Theorem 1. Because In [fy, ' — AW, | = In [l — Afp, Wi | —
In |fp, |, it causes no harm to drop the term In |fp, |, which does not
involve parameters, in the analysis of consistency of an extremum
estimator. Then InL,(0) = —35In@2ro?) — S5[F'(S) —
)\Wnsn - Xnﬂ]/[F_l(Sn) - }”Wnsn - Xnﬂ] + In |In - )‘fDan|- In
order to establish the consistency of the ML estimator, with the
identification condition in Assumption 9, it remains to show the

uniform convergence %[supge(,) [ InL,(8) — Q,(0)]|] L 0, and the
equicontinuity of 1Q,(6).

Proof of the uniform convergence

Denote v; (%, B) = F_l(si,n) — AMWi.nSn — XinB = (Ao —
M) Wi. nSp+Xi n(Bo—B)+€in. With Proposition 3, it remains to show
that plim,_, o SUPgeo 2| Y1y vin(h, B)? — Evin(X, B)?| = 0.To
do so, it is sufficient for us to show the pointwise convergence
plimy oo 2[X1; vin(X, B)? — Evin(X, B)?] = O for each (1, B),
and the stochastic equicontinuity of v; , (A, 8 )2.

Under Assumptions 6 and 7, Corollary 1 implies that v ,(A, B)
is Ls bounded uniformly in i and n, and geometrically L,-NED
uniformly iniand n. Thus, v; 5 (A, B)? is L, 5 bounded uniformly in i
and n, and geometrically L,-NED uniformly iniand n by LemmaA.1.
Thus, the pointwise convergence holds by the LLN in Jenish and
Prucha (2012). By Lemma 1 in Andrews (1992), the stochastic
equicontinuity originates in uniform L, boundedness of w;. ,S, and
X n, and

1< 1<
= via0a, B = = Y vin(ha, B)?
n i=1 n i=1

1
= ’n Z[vi’n()q, B1) + vi,n()\27 B2)]
i=1
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Proof of the equicontinuity
With stochastic equicontinuity and the boundedness of the
parameter space, the equicontinuity of ¢ “2E[F~1(S,;) — AW,S, —

XV [F~"(Sp) — A WSy
(1991).

Because 1EIn I, — A1fp, Wal — ZEIn|I, — Aofp, Wal = (Ag —
32) Bt = Afo, Wa) ™ fo, Wa), and

— Xy B]is aresult of Corollary 3.1 in Newey

o0
(T = Ao, W) ™o, Walloo = || Y o, W) fio, W
1=0 00
. 1 00
= — (M W) Ao, Wy — Y =
Am ,; ! S ,; xma -0’
we have |1EIn I, — Aifp, Wyl — %Eln Il — Aafo, < A —
¢
Mliag O

Before proving asymptotic normality of the ML estimator, we
first prove the uniformly and geometrically L,-NED property of

Zi n€i Zi,n€i _
{Gg — 1iin — E( i ri,-,n)}, where z;, = Zj Wi nSj,n- Denote

Xin = Xit,ns - -+ Xikn)-
Lemma BA4. {z; q€i/0¢ — tiin — Elzin€i/0d — Tiinl}l, is uniformly
L, 5 bounded, and geometrically L,-NED uniformly ini and n. {q; , =

[Zj 1(XU ot n)2 + (Z,nél/O'O — Tiin — E(Zi,nei/ao2 - rii,n))z +

( i~ 1/ 2} is also geometrically L,-NED uniformly in i and n.

Proof. By Corollary 1, {z; nei/o¢} is uniformly L, s bounded, and
geometrically L,-NED uniformly ini and n. Because sup; ,, |Ez; n€;| <
sup; , E|z; n€il < sup;, l|zine€ill, < 00, the Ly 5 boundedness in the
first claim follows from

|Tii,n — Eriinl

ZIX’IZZ

Z Wijy nWiyjp,n *
1 Q2 Ji
X Wiy nWiinlfify, - fi — Efif, -+ fill

2
<2 Z}"l ||W ||l+1bl+1 et
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Next, we establish the uniformly and geometrically L,-NED
property of {ri}. For {fi, = f(tin)}, from the proof of Proposi-
tion 3, ||fi, n—E(fi.n| Fi.n(mdp))|l2 < A1¢™ for some constant A;. Since
the chaini — j; — --- — j; — iis closed, we have d(j,, i) < do,
d(jz, l) < 2do, ..., d(j[([+1)/2], l) < [H—T]]do, ey d(jl_1, i) < 2dy,
d(j;,i) < do. So, with the inequality: |x1---X% — y1---y| <

cH1 Z§=1 |x; — yi| if |x;] < C and |y;| < C forall i's, when | < m,
we have
Wfifiy - - - fi — Elfifiy - - £y Fin(mdo)]ll2
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1
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k=1
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Hence,
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for some constant A, that does not depend on n, which means that
{riin — Eriin} is uniformly and geometrically L,-NED.

The uniformly and geometrically L,-NED property of {g; »} is a
result of LemmaA.3. 0O

Proof of Proposition 4. We need to check the conditions of the
CLT of the L,-NED sequence, i.e., Assumptions 3 and 4 in Jenish and
Prucha (2012) hold for {q,;,n} defined in Lemma B.4. Assumption 3
in Jenish and Prucha (2012) is satisfied because the error terms are
i.i.d. and {x; ,} satisfies Assumption 11. With Lemma B.4, conditions
(c)and (d) of Assumption 4 in Jenish and Prucha (2012) hold. Under
Assumption 12, the condition (b) in Assumption 4 in Jenish and
Prucha (2012) is satisfied. So it remains to check the uniform L,
integrability for some §; > 0. One sufficient condition (Shorack,

2000, p. 54) is to show sup; , Eq; ;”SZ < oo for some 8, > 0.Because
rin)|*> < oo from Lemma B.4,

Sup; E| 122 t —Tiin — E(Zl,ﬂel/ao
{e,-,n} is normally distributed and {x;; ,} are uniformly Ls bounded,
we have

K 2.5
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Proof of Theorem 2. We will show that | d g"gg”;,e") —E2 ;‘;La’;(f)")l
P 1,821InLy(Bn) 8%Inly(6), P 1(921InLy(Bn)
= 0and [ [=55™ — 5| — 0, then o] =7k —
EW| — 0.The second order derivatives of the log likelihood
are
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Similarly to the proof of Theorem 1, with the Ls boundedness
of {Xi,n}v {wi-,nsn} and {vi,n()‘«v B) = F_l(si,n) — AW;. nSp — xi,nﬂ}
uniformly in i and n, and their geometric L,-NED properties, their
products obey the weak LLN in Jenis h and Prucha (2012). Thus, in

order to prove - |“’ g’;g’;(,%) _g2 g“g’;(,%)l 0, it suffices to show

that%{tr[(l—kofDan) o, Wal* —Etr[ (I —2afp, Wa) ™' fp, W,

WP} >

0.To do so, we show that {([ (I, — Afp, W) ~fp, W, 1%)ii} is uniformly
bounded and L,-NED uniformly in i and n. Because

{In = Mo, Wa) ™ fo, Wal* i
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the uniform boundedness comes from
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When k < m, inequality (23) implies
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for some constant A, > 0. When k > m,
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for A3 = 2A.;2. So,
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Therefore, {[((I, —Afp, Wn) ™ fp, W,)?1i} is geometrically uniformly
L,-NED.

1,9%InLy(B) _ g d%InLy(bp)
Thus, we have shown n| 0907 E=—may

82 0Ly (Bn) 82Inly(6g), P A P
| T 393"9,0 | — 0. BeFZause O, — 6y —
0, it is easy to check the other terms except % To do so,
we only need to check that L 1er[((l, — Afp,Wa) " fp,Wn)?] =
%tr[(l,1 — Mp,Wn)~Yfp, W, 13 is bounded. A sufficient condition is
that ([(I, — Afp, Wn)”fDnW 1%);i is uniformly bounded:
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Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2014.12.005.
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