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Abstract

This paper studies a binary choice game model with network links, where the network peer

effects are non-negative, and there might be only one or few networks in the sample. The model

might have multiple Nash equilibria. We assume that the maximum Nash equilibrium, which

always exists and is strongly coalition-proof and Pareto optimal, is selected. We investigate a

simulated moment method for estimation. The challenging econometric issues are the possible

correlation among all dependent variables in a network setting and the discontinuous functional

form of our simulated moments. We overcome these challenges via the empirical process theory

and derive the spatial near-epoch dependence (NED) of the dependent variable. We establish

a criterion for an NED random field to be stochastically equicontinuous and we apply it to

develop the consistency and asymptotic normality of the estimator. We examine computational

issues and finite sample properties of the simulated moment method by some Monte Carlo

experiments.
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1. Motivation and Introduction

In this paper, we study a spatial autoregressive (SAR) binary choice model with network links

based on a static complete information game. This model can be used in various fields in economics,

including agricultural economics, IO, spatial econometrics, and social networks, etc, for example,

the decision for Wal-Mart to enter a county or not (Jia, 2008), peer effects in education and

sport activities for adolescents (Liu, Patacchini, Zenou, 2014), peer effects for students in smoking

(Krauth, 2006, Hsieh and Lee, 2014), presidential election (Lacombe and LeSage, 2013), the decision

of adopting an agricultural program (Holloway, Shankara, and Rahman, 2002), the decision on

whether to convert land-use from agricultural to non-agricultural uses (LeSage and Pace, 2009),

the decision of adopting the District Planning System in Japan (Hoshino, 2009).

By representing a network as a graph, there are several methods to model binary choices on a

graph. For the Besag logistic auto-model (Besag, 1974, Gaetan and Guyon, 2010), statisticians treat

the data as a Markov random field and generalize the Ising model in statistical mechanics to study

binary choices on graphs. This model is widely used in epidemiology. But this model does not in-

volve rational decision, and thus it is not quite relevant in economics. For empirical economists, some

have used the latent SAR probit model: yi,n = 1(y∗i,n > 0) and y∗i,n = λ
∑n
j=1 wij,ny

∗
j,n+xi,nβ+εi,n,

where y∗i,n is a latent dependent variable, Wn = (wij,n) is a specified spatial weight matrix or ad-

jacency matrix in network analysis, and εi,n’s are usually modeled as normally distributed random

variables. In this latent SAR probit model, it is the latent variables that directly affect neigh-

borhood’s utility, and the observed binary variable is an indicator on signs of the latent variable.

This model is often estimated by Bayesian methods. Another interesting model is the simultaneous

SAR binary choice model, yi,n = 1(λ
∑n
j=1 wij,nyj,n + xi,nβ + εi,n > 0), which is is different from

the latent SAR probit model, in that y∗j,n is replaced by yj,n on the right hand side (RHS) of the

equation. In the simultaneous SAR binary choice model, it is the linked individuals’ realizations,

rather than their latent variables, that affect the dependent variable of an individual. Both the la-

tent and simultaneous SAR models are game models with perfect information. In the latent model,

an individual’s utility is affected by his/her friends’ utilities, but econometricians can only observe

binary indicators y’s. In the simultaneous model, his utility is influenced by his friends’ actions,

rather than their utilities. So the model is more related to an econometric game model on discrete
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choices.

For the simultaneous SAR binary model, there are some challenging issues that need to overcome.

First, there may be multiple solutions, or multiple Nash equilibria (NE) in the language of game

theory. Furthermore, the number of equilibria might increase as number of players n increases.

There may be correlation between any two yi,n’s. Specifically, we pay special attention to the

case of a single network, not only many similar independent markets or groups as assumed in

the existing literature on econometrics for games and social interactions. For the estimation of

games with multiple equilibria, there are various approaches including equilibrium selection (see,

e.g., Bajari, Hong and Ryan, 2010) and set estimation (see, e.g., Chernozhukov, Hong and Tamer,

2007). In this paper, we adopt the approach of equilibrium selection. Our main goal is to develop a

rigorous large sample theory for the estimation of the simultaneous discrete choice model within a

single network, even though the theory may also be applied to the situation with many independent

networks. In order to have some law of large numbers (LLN) and central limit theorems (CLT)

for asymptotic analysis, we take advantage of recent development on nonlinear spatial processes by

establishing weak spatial dependence properties for relevant variables and functions in the model.

As there might exist multiple solutions and the indicator function 1(· > 0) is not continuous, the

investigation of weak dependence for variables of the model is a research pursuit.

This paper contributes to the literature in the following aspects. (1) It develops a consistent

and asymptotically normally distributed estimator for the model; so it enriches econometric tools to

deal with binary data on networks, in particular, a single network. (2) We introduce a procedure to

establish spatial near-epoch dependence (NED) of outcome variables of a nonlinear model without

the need of a contraction mapping. (3) It extends the literature of spatial NED to the case of a

network game. (4) It shows some criteria for the stochastic equicontinuity (SEC) for NED random

fields. (5) It extends some simulation estimation theory to the case with spatial dependence as the

estimation method under consideration is a simulated moment estimator.

More Related Literature. In addition to the literature mentioned above, this paper is related

to some other publications. Some researchers apply simulation methods to discrete choices mod-

els, e.g., Pakes and Pollard (1989) and Krauth (2006). Simulation estimation is needed because

correlation leads to complex integration. But their studies focus on many independent individu-

als or markets setting. Our paper differs from their studies in that: (i) we focus on games with
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many individuals linked in a network; (ii) simulation is needed to locate selected equilibria over the

range of unobserved disturbances in order to calculate choice probabilities. Recently, the studies

of estimation of games with many players have attracted more attention. Menzel (2014) investi-

gates two-sided matching markets with a large number of participants and non-transferable utility.

Menzel (2015) examines anonymous games where payoffs depend on an agent’s own action and the

empirical distribution of others’ actions. He requires that the number of players in every group

increases at the same rate. Our paper differs from Menzel (2015) in at least two aspects: (i) we

do not need to exclude the existence of some small and independent markets or various increasing

rates of market size; (ii) the predetermined relationship of individuals, reflected in Wn, indicates

diverse importance of players to each specific individual.

The structure of this paper is as follows: In Section 2, we introduce an SAR binary choice

model and discuss the strongly coalition-proof equilibrium of this model. For any equilibrium

from a selection rule, it is shown to be a spatial NED process. In Section 3, we consider the

simulated moment estimation of this model and establish consistency and asymptotic normality

of the estimator. In Section 4, Monte Carlo studies are performed to examine the finite sample

performance of the estimator. In Appendix A, we list conditions for SEC of NED random fields. In

Appendix B, we generalize conditions for asymptotic distributions of simulated moment estimators

to network data with spatial correlation. In Appendix C, we show some results on derivatives of

the probability of the NE, which is needed for asymptotic analysis in the main text. All the proofs

for theorems, propositions and lemmas in the main text are collected in Appendix D.

2. The Model

2.1. Model Setup and Equilibrium Concepts

Assume that there are n individuals or players, which may be consumers, firms, local governments,

etc, living in a d-dimensional Euclidean space Rd. We use~i ∈ Rd to represent individual i’s location

in Rd. ~imay include both its geographic location and some socio-cultural or economic characteristics

of individual i. Denote dij ≡ d(~i,~j), the distance between individuals i and j.

Assumption 1. For any i 6= j, dij is larger than or equal to a specific positive constant, without

loss of generality, say, 1.
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Assumption 1 implies the increasing domains asymptotic and excludes infilled asymptotic. Each

individual is endowed with a vector xi,n ∈ RK of some exogenous characteristics, which is observable

to all players and econometricians, and εi,n ∈ R is public to all players but is unobservable to

econometricians, i.e., we are considering a complete information static game. Player i chooses his

action yi,n from the strategy set {0, 1}. At the alternative 0, his utility is normalized to be zero; and

for alternative 1, his utility is u(yi,n = 1|y−i,n, Xn) = λ0

∑n
j=1 wij,nyj,n+xi,nβ0+εi,n, where wij,n >

0 is the (i, j)-entry of the exogenous spatial weight matrix (adjacency matrix) Wn,1 the subscript 0

for a parameter represents its true value, Xn consists of all xi,n, and −i ≡ {1, · · · , n}\{i} is the set

of all individuals but with i excluded. Individual i chooses yi,n = 1 iff u(yi,n = 1|y−i,n, Xn) > 0.

This model can be written as

yi,n = 1(λ

n∑
j=1

wij,nyj,n + xi,nβ + εi,n > 0), (1)

where 1(·) is the set indicator. We treat the solution to Eq. (1) for all i = 1, · · · , n as the NE of

the n-player game. So the game under study is a non-cooperative game.

Assumption 2. λ0 > 0.

By Assumption 2, an individual’s action has non-negative externalities on other players and the

game is strategically complementary. Such a game is a supermodular game (Milgrom and Roberts,

1990). Supermodular games are used in oligopoly competition, macroeconomics (Diamond search

model), arms races, technology adoption and diffusion, and many others (Milgrom and Roberts,

1990). The estimation of supermodular games is studied in Uetake and Watanabe (2013), Molinari

and Rosen (2008), Jia (2008) where she investigates the expansion of Wal-Mart in counties, and

Miyauchi (2014) where he examines the estimation of network formation games. If Assumption 2

fails, there might be no pure strategy NE. See Appendix B.2 in Jia (2008) for a numerical counter-

example.

From Milgrom and Roberts (1990), a complete information static supermodular game always has

at least one NE.2 There might be multiple NE, and the set of NE is a complete sublattice in {0, 1}n,

1Endogenous Wn is an interesting issue in network formation. But in this paper, our intention is to develop
asymptotic theory for estimation of a discrete choice game with players connected in a network, so we treat Wn as
given and binary choice decisions are not subject to selectivity in network formation.

2This is from Tarski’s fixed point theorem, which applies for a complete lattice. For a linear SAR model, Tarski’s
fixed point theorem is not applicable, because Rn, the range of yn in a linear SAR model, is not a complete lattice.
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which contains its supremum and infimum. Furthermore, the largest NE is Pareto optimal. There

is a concept stronger than NE, namely, strongly coalition-proof equilibrium (SCPE) in Milgrom

and Roberts (1995).

Definition 1. Let Γ = {{1, 2, · · · , n},S, (π1, · · · , πn)} be a normal form game, where {1, 2, · · · , n}

is the set of players, S =
∏n
i=1 Si is the strategy set defined to be the product of strategy spaces of

players , where Si is the strategy space of player i, and πi : S → R is the payoff function of individual

i. s∗ ∈ S is called an SCPE if and only if for any proper nonempty subset J $ {1, 2, · · · , n}, there

is no sJ ∈
∏
j∈J Sj such that πj(s

∗) 6 πj(sJ , s
∗
−J) for all j ∈ J and πj(s

∗) < πj(sJ , s
∗
−J) for some

j ∈ J .

SCPE is immune to incentive-compatible deviations by coalitions. In an environment where

players can freely discuss their strategies, but cannot make binding commitment, it is possible

for coalitions of players to arrange plausible, mutually beneficial deviations for Nash agreements

(Bernheim, Peleg and Whinston, 1987). From Theorem 2 in Milgrom and Roberts (1995), the

maximum NE of our model is an SCPE. If we do not consider the critical case that some individual

is indifferent for his choices, of which the probability is zero, the maximum NE of our game is the

unique SCPE (Milgrom and Roberts, 1995). Thus, our model has a unique SCPE almost surely and

we only consider the maximum NE as the chosen one in a sample in this paper. Jia (2008, pp. 1279-

1280) proposed a simple and fast way to calculate the maximum NE: (1) let y0
n = (1, · · · , 1) ∈ Rn;

(2) yt+1
n = 1(λWny

t
n + Xnβ + εn > 0), where 1(u > 0) ≡ (1(u1 > 0), · · · , 1(un > 0)); (3) the

iteration process stops once yt+1
n = ytn. The iteration has at most n steps, since ytn is nonincreasing

in t.

2.2. Near-epoch Dependence

In this model, there are both heterogeneity among players and correlation among the decisions of

players due to interactions. Thus, we need some type of weak dependence concept so that proper

LLN and CLT can be valid in order to develop a rigorous asymptotic theory for estimators. We

utilize the concept of spatial NED developed in Jenish and Prucha (2012). Intuitively, if a random

field {zi,n}ni=1 is NED on a base {εi,n}ni=1, then the εj,n’s, with j’s near i, are able to give a good

prediction of zi,n. To establish NED, we need more assumptions.
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Assumption 3. Wn 6= 0 is a non-stochastic n×n matrix with non-negative entries and zero diagonal

elements. Furthermore, BW ≡ supn ||Wn||∞ <∞.

Assumption 4. {εi,n}ni=1 are i.i.d. with support R; f(·), the pdf of εi,n, and its derivative f ′(·)

satisfy Bf = supε f(ε) <∞ and Bf ′ = supε |f ′(ε)| <∞; {εi,n}ni=1 are independent of {xi,n}ni=1.

Assumption 5. The parameter space of θ = (λ, β′) is Θ = [0, Bλ]×
∏K
k=1[−Bβk , Bβk ] ⊆ RK+1.

Under Assumptions 3 - 5, supi,n,θ,xi,n Pr(−λ||Wn||∞ − xi,nβ 6 εi,n < −xi,nβ|xi,n) = δ̄ for

some δ̄ such that 0 < δ̄ < 1. Previously, we have defined a distance between i and j, dij , used

in Assumption 1. Now we need another concept of distance in terms of network links between

individuals. We call that individual j affects individual i directly, denoted j → i, if and only

if wij,n 6= 0.3 A path jk → jk−1 → · · · → j0, is defined to satisfy two conditions: (1) any

two individuals involved are different, and (2) jp → jp−1 for all 1 6 p 6 k. Call the length of

jk → jk−1 → · · · → j0 as k. For j 6= i, define dij as the smallest k ∈ N ≡ {1, 2, · · · } such that

there exists a path from j to i with length k. If there are no paths from j to i, then dij ≡ ∞. And

define dii ≡ 0. Thus, j → i is equivalent to dij = 1. Notice that it is possible that dij 6= dji in

a directed graph. But for an undirected graph, dij = dji. Another equivalent definition for dij is

that dij ≡ inf{1 6 k ∈ N : (W k
n )ij 6= 0} when i 6= j. For a set A, |A| denotes its cardinality.

Assumption 6. There is an m0 ∈ N such that δ̄l̄p < 1, where

l̄p ≡ sup
m>m0

sup
i,n
|{path jm → jm−1 → · · · → j1 → i : dijm = m}|1/m.

Assumption 6 includes the case of many independent groups, where the size of each group

is bounded by a given natural number n̄. Let m0 = n̄ + 1, then l̄p = 0 and Assumption

6 holds trivially. For a single network or a network with large components, define a matrix

W ∗n as follows: w∗ij,n = 1 if and only if wij,n > 0; otherwise, wij,n = 0.
∑n
jm=1(W ∗n)nijm =∑

jm
· · ·
∑
j1
w∗ij1,nw

∗
j1j2,n

· · ·w∗jm−1jm,n
is the number of walks4 ending in i. Thus, |{path jm →

· · · → j1 → i : dijm = m}| 6
∑n
jm=1(W ∗n)mijm 6 ||(W

∗
n)m||∞. By Gelfand’s formula, limm→∞ ||(W ∗n)m||1/m∞ =

ρ(W ∗n), where ρ(W ∗n) is the spectral radius of W ∗n . Thus, for any ε > 0, we can choose m0 large

3In our model, we have wii,n = 0, so we do not care about direct self-influence. In fact, direct self-influence plays
no role in our theory. We take this motivation from a named friend network. In such a network, wij,n=1 if individual
i names j as his friend. Thus, j is i’s role model who will influence i.

4jmjm−1 · · · j1 is defined to be a walk iff jp → jp−1 for all 2 6 p 6 m. Any two individuals on a path are different,
but they can be the same on a walk.
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enough such that l̄p 6 supn ρ(W ∗n) + ε. Since δ̄ is related to λ||Wn||∞, Assumption 6 adds some

constraints on Bλ||Wn||∞ and the structure of the network (due to l̄p). More dense network (greater

l̄p) the structure is, weaker interaction (less λ||Wn||∞) has to be assumed. For instance, when εi,n

is standard normally distributed, then δ̄ = 2Φ(Bλ supn ||Wn||∞/2)− 1. Assumption 6 implies that

Φ(Bλ supn ||Wn||∞/2) <
l̄p+1

2l̄p
. If ||Wn||∞ = 1, l̄p = 2, then Bλ < 1.349; ||Wn||∞ = 1, l̄p = 3, then

Bλ < 0.86. For the standard logistic distribution, if ||Wn||∞ = 1, l̄p = 3, then Bλ < 1.38.

Assumption 7. dij = 1 implies dij 6 d̄0 for some constant distance d̄0 > 1.

Assumptions 2-6 are sufficient to establish the NED of yi,n(θ), if the metric used is dij (see

Proposition 1). For Euclidean distance, Assumptions 1 and 7 are required. Assumption 7 implies

that only individuals within distance d̄0 may directly affect each other. This assumption is widely

used in spatial statistics and spatial econometrics, e.g., Xu and Lee (2015a). Consider the system

yi,n = 1(λi
∑n
j=1 wij,nyj,n+xi,nβ+εi,n > 0), where 0 6 λi 6 Bλ. This system is more general in that

each individual i may have a different interaction coefficient λi. This generalization is just for the

purpose of having a general theoretical result in Lemmas C.2 and C.3.5 Denote θ = (λ1, · · · , λn, β′)′

and Xn = (x′1,n, · · · , x′n,n)′. Then yi,n = yi,n(εn, Xn, θ). For any natural number m ∈ N and any

individual i, separate individuals into two sets: {j : dij 6 m} and {j : dij > m}. Conformable to

this partition, we haveXn = (x
(i,6m)
n , x

(i,>m)
n ) and εn = (ε

(i,6m)
n , ε

(i,>m)
n ). The following proposition

describes the conditional probability of difference for an individual’s choices with (x
(i,>m)
n , ε

(i,>m)
n )

at two different values. The probability in part (1) of Proposition 1 is taken over ε
(i,6m)
n , and is

relevant for the spatial NED property. The probability in part (2) has an additional conditional

argument, and will be useful for analyzing second order derivatives of choice probabilities.

Proposition 1. Let m ∈ N such that m0 6 m. Denote ȳi,n = yi,n(ε
(i,6m)
n , ε̄

(i,>m)
n , x

(i,6m)
n , x̄

(i,>m)
n , θ)

and ỹi,n = yi,n(ε
(i,6m)
n , ε̃

(i,>m)
n , x

(i,6m)
n , x̃

(i,>m)
n , θ), where (x̄n, ε̄n) and (x̃n, ε̃n) are two different

values of (xn, εn). Then,

(1) for all i, n, θ, x̄
(i,>m)
n , x̃

(i,>m)
n , ε̄

(i,>m)
n and ε̃

(i,>m)
n

Pr
(
ȳi,n 6= ỹi,n|x(i,6m)

n , x̄(i,>m)
n , x̃(i,>m)

n , ε̄(i,>m)
n , ε̃(i,>m)

n

)
6 δ̄(δ̄l̄p)

m; (2)

5For estimation, we can not allow λi’s to be different. Otherwise, there are too many parameters to be estimable.
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(2) if dik 6 m, then for all i, n, θ, εk,n, x̄
(i,>m)
n , x̃

(i,>m)
n , ε̄

(i,>m)
n and ε̃

(i,>m)
n ,

Pr
(
ȳi,n 6= ỹi,n| εk,n, x(i,6m)

n , x̄(i,>m)
n , x̃(i,>m)

n , ε̄(i,>m)
n , ε̃(i,>m)

n

)
6 (δ̄l̄p)

m. (3)

Now we state the NED result for the dependent variable of our model.6

Corollary 1. Let Fi,n(s) ≡ σ({xj,n, εj,n : dij 6 s}) and yi,n(θ) = yi,n(εn, Xn, θ). Let m0 6 m ∈ N.

(1) Under Assumptions 2-6, supi,n,θ∈Θ ||yi,n(θ)− E[yi,n(θ)|xj,n, εj,n, dij 6 m]||L2 6 (δ̄l̄p)
m/2.

(2) Under Assumptions 1-7, supi,n,θ∈Θ ||yi,n(θ)− E[yi,n(θ)|Fi,n(md̄0)]||L2 6 (δ̄l̄p)
m/2.

Corollary 2. Denote BX = supi,k,n ||xik,n||L2 . Let m0 6 m ∈ N.

(1) Under Assumptions 2-6, supi,k,n,θ∈Θ ||yi,n(θ)xik,n − E[yi,n(θ)xik,n|xj,n, εj,n, dij 6 m]||L2 6

BX(δ̄l̄p)
m/2 and supi,k,n,θ∈Θ ||yi,n(θ)

∑n
l=1 wil,nxlk,n−E[yi,n(θ)

∑n
l=1 wil,nxlk,n|xj,n, εj,n, dij 6 m]||L2 6

BXBW (δ̄l̄p)
m/2.

(2) Under Assumptions 1-7, supi,n,k,θ∈Θ ||yi,n(θ)xik,n−E[yi,n(θ)xik,n|Fi,n(md̄0)]||L2 6 BX(δ̄l̄p)
m/2

and supi,k,n,θ∈Θ ||yi,n(θ)
∑n
l=1 wil,nxlk,n−E[yi,n(θ)

∑n
l=1 wil,nxlk,n|Fi,n(md̄0)]||L2 6 BXBW (δ̄l̄p)

m/2.

Notice that the NED property is uniform not only in i and n, but also in θ. This is needed when

we apply some empirical process techniques to establish a large sample theory for our proposed

estimator.

3. MSM and its Large Sample Properties

3.1. The MSM Estimator and Its Consistency

The likelihood of the model is Ln(θ|Yn, Xn) = Pr({εn : The maximum NE isYn}|θ,Xn), where

θ = (λ, β′)′. However, the method of ML estimation might be difficult to work with for this model.

There are several disadvantages for the ML approach: (1) For large n, the closed form of the

likelihood function is not available. (2) It is also hard to simulate. Due to the complex model

structure, it seems natural to simulate outcomes by simulating disturbances and uses a frequency

simulator to approximate the probability of an observed SCPE Yn. However, because there are

totally 2n various and possible Yn’s, it needs an exponential number of simulations to obtain

an accurate estimation of Ln(θ|Yn). Furthermore, that is only for a specific θ. To maximize the

6The idea of proof is enlightened by de Jong and Woutersen (2011), even though the latter is for time series.
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likelihood function, we need to evaluate it at different values of θ. (3) It seems complicated to obtain

asymptotic properties from this likelihood function. It is difficult to establish pointwise convergence

in probability, let alone uniform convergence in probability and asymptotic distribution.

Therefore, we decide to consider generalized method of moments (GMM), or more precisely,

method of simulated moments (MSM). Since the closed form of moments is not available, simulation

estimation is needed. Various moment conditions can be obtained from the conditional moment

condition E[Pr(yi,n = 1|Xn, θ0)− yi,n|Xn] = 0, such as E{[Pr(yi,n = 1|Xn, θ0)− yi,n]x′i,n} = 0 and

E{[Pr(yi,n = 1|Xn, θ0) − yi,n](wi·,nXn)′} = 0, where wi·,n is the i-th row of Wn. The following

proposition implies that this conditional moment condition is sufficient to identify the unknown

parameters of our model.

Proposition 2. Denote Xn = [X1n, X2n] where X2n is an n-dimensional column vector. Assume

support(X2n|X1n) = Rn and β20 6= 0, where β20 is the coefficient of of X2n. Under Assumptions

3 and 4, if E(x′i,nxi,n) has full rank for every i, then E[Pr(yi,n = 1|Xn, θ) − yi,n|Xn] = 0 for all i

implies θ = θ0.

Let qi,n be a vector of IV variables for i, and Qn ≡ (q′1,n, · · · , q′n,n)′, which are functions of Wn

and Xn. Let

gi,n(θ) ≡ [Pr(yi,n = 1|Xn, θ)− yi,n]q′i,n. (4)

Then E gn(θ0) = 0. By having R random draws ε
(r)
n (r = 1, · · · , R) from the distribution of

εn, where R does not need to depend on n, and then generating yi,n(ε
(r)
n , Xn, θ)’s as dependent

variables from the model, P̂r(yi,n = 1|Xn, θ) = 1
R

∑R
r=1 yi,n(ε

(r)
n , Xn, θ) is an unbiased simulator of

Pr(yi,n = 1|Xn, θ). Denote

ĝi,n(θ) = [P̂r(yi,n = 1|Xn, θ)− yi,n]q′i,n. (5)

Notice that E ĝi,n(θ0) = 0, because P̂r(yi,n = 1|Xn, θ) is an unbiased simulator. When the number

of moments is greater than K + 1, we choose a (possibly stochastic) positive definite matrix Ωn(θ)

to be a GMM weighting matrix.

Assumption 8. The (stochastic) Ωn(θ) converges in probability uniformly to Ω(θ), i.e., supθ∈Θ |Ωn(θ)−

Ω(θ)| = op(1). The Ω(θ) is positive definite for any θ ∈ Θ such that infθ∈Θ min eig Ω(θ) > 0 and

supθ∈Θ max eig Ω(θ) <∞, where eig Ω(θ) denotes the set of eigenvalues of Ω(θ).

9



Then, the MSM estimator is arg minθ∈ΘQn(θ), where

Qn(θ) ≡

[
1

n

n∑
i=1

ĝi,n(θ)

]′
Ωn(θ)

[
1

n

n∑
i=1

ĝi,n(θ)

]
≡

∥∥∥∥∥Ω1/2
n (θ)

1

n

n∑
i=1

ĝi,n(θ)

∥∥∥∥∥
2

, (6)

is a sample moment objective function with || · || being the Euclidean norm. Let

Q̄n(θ) ≡

[
1

n

n∑
i=1

E gi,n(θ)

]′
Ω(θ)

[
1

n

n∑
i=1

E gi,n(θ)

]
≡

∥∥∥∥∥Ω1/2(θ)
1

n

n∑
i=1

E gi,n(θ)

∥∥∥∥∥
2

be the norm of the population moment counterpart. We need some moment conditions in order to

obtain large sample properties of the estimator. Formally, the requirements for the IVs are stated

in Assumption 9:

Assumption 9. (1) There are two real numbers 2 < p0 6 q0 and an even number w0 > 2p0(K+1)r−1
0 ,

where r0 ≡ p−1
0 −q

−1
0

2−1−q−1
0

, such that 1
2 = 1

p0
+ w0−1

q0
and BQ ≡ supk,i,n ||qik,n||Lq0 <∞;

(2) qi,n is measurable with respect to σ({xj,n : dij 6 m0d̄0}).

(3) ∀ θ 6= θ0, lim infn→∞ Q̄n(θ) > 0.

Assumption 9(1) adds some moment requirements on qi,n. If xi,n is of dimension K with

K > 2, then we need w0 > 12 and q0 > 2w0 > 24.7 Thus, we require high moment condi-

tions for qi,n. For example, (p0, w0, q0, r0) = (3, 10K + 10, 60K + 54, 20K+17
30K+26 ) satisfies Assump-

tion 9(1). With Assumptions 9 (1) and (2), similarly to Corollary 2, supi,k,n,θ∈Θ ||yi,n(θ)qik,n −

E[yi,n(θ)qik,n|Fi,n(md̄0)]||L2 6 BQ(δ̄l̄p)
m/2, whenever m > m0. Assumption 9(3) is an identifica-

tion condition, which can be satisfied if the IVs extract enough identification information from the

conditional expectation. Finally, some α-mixing conditions are required in order that the LLN in

Jenish and Prucha (2012) can be applied.

Assumption 10. {xi,n}ni=1is spatially α-mixing with coefficients α(u, v, r) 6 (u + v)τ α̂(r) for some

τ > 0 and
∑∞
r=1 r

d−1α̂(r) <∞.8

With all these assumptions, the consistency of the MSM estimator follows.

Theorem 1. Under Assumptions 1-10, θ̂n
p−→ θ0.

7Because p0 6 q0, 1
2

= 1
p0

+ w0−1
q0

> 1
q0

+ w0−1
q0

= w0
q0

and q0 > 2w0.
8See Jenish and Prucha (2009) for the concept of spatially α-mixing random fields.
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Remark. As contrary to a simulated likelihood approach, for the MSM estimation, we do not require

that the number of random draws, R, increases as the sample size n increases in order to obtain

consistency (Train, 2009).

3.2. Asymptotic Distribution of the Estimator

Theorem 3.3 in Pakes and Pollard (1989) is a general result for the asymptotic distribution of an

estimator based on simulation of frequencies. We generalize their result to allow heterogeneity in

Theorem B.1 and to allow that the true parameter is on the boundary of the parameter space

in Theorem B.2 in the Appendix. Condition (iii) in Theorems B.1 and B.2 requires stochastic

equicontinuity (SEC) of the empirical process of sample moments. Thus, we first apply Theorem

A.1 to obtain the SEC of gin(θ) in Eq. (4) and ĝin(θ) in Eq. (5) of our model.

Proposition 3. Let w ∈ (2p0(K + 1)r−1
0 , w0] be an even number. Then, for any ε > 0, there exists

an η > 0, such that for any k,

lim sup
n→∞

∥∥∥∥∥ sup
||θ1−θ2||∞<η

∣∣∣∣∣n−1/2
n∑
i=1

[gik,n(θ1)− gik,n(θ2)]

∣∣∣∣∣
∥∥∥∥∥
Lw

6 ε.

Corollary 3. Let w ∈ (2p0(K + 1)r−1
0 , w0] be an even number. Then, for any ε > 0, there exists an

η > 0, such that for any k,

lim sup
n→∞

∥∥∥∥∥ sup
||θ1−θ2||∞<η

∣∣∣∣∣n−1/2
n∑
i=1

[ĝik,n(θ1)− ĝik,n(θ2)]

∣∣∣∣∣
∥∥∥∥∥
Lw

6 ε.

We still need some additional regularity conditions in order to apply Theorem B.1 to establish

the asymptotic distribution of the estimator.

Assumption 11. λ0 < Bλ and β0 ∈
∏K
k=1(−Bβk , Bβk).

Assumption 12. The α-mixing coefficient (u+ v)τ α̂(r) of {xi,n}ni=1 satisfies

∞∑
r=1

rd(τ∗+1)−1α̂(r)δ∗/(4+2δ∗) <∞

for some δ∗ > 0, where τ∗ ≡ δ∗τ/(2 + δ∗).

Assumption 13. 1
n

∑n
i=1 ∂ E gi,n(θ0)/∂θ′ → Γ and Γ has full column rank.

11



Assumption 14. var 1√
n

∑n
i=1 gi,n(θ0)→ V and V is nonsingular.

Theorem 2. Under Assumptions 1-14,
√
n(θ̂n − θ0)

d−→ N(0, (1 + 1
R )(Γ′ΩΓ)−1Γ′ΩV ΩΓ(Γ′ΩΓ)−1) if

λ0 ∈ (0, Bλ). On the other hand, if λ0 = 0,
√
n(θ̂n− θ0) will converge to a mixture of distributions:

with a half probability, a truncated N(0, (1 + 1
R )(Γ′ΩΓ)−1Γ′ΩV ΩΓ(Γ′ΩΓ)−1) on (0,∞) × RK , and

with a half probability, a multivariate distribution with its first component degenerated at 0 and the

remaining components N(0, (1 + 1
R )[(Γ′ΩΓ)−1]−1[Γ′ΩV ΩΓ]−1[(Γ′ΩΓ)−1]−1) on RK , where, for a

matrix, “-1” means the submatrix without the first row and column.

To conduct statistical inference, we need to estimate the asymptotic distribution of θ̂n. The

analytical variance approximation is rather intractable, so we suggest constructing confidence in-

tervals by bootstrap. Specifically, (1) generate B vectors of ε
(b)
n ’s, where b = 1, · · · , B, of εn,

and generate the corresponding yn(ε
(b)
n , Xn, θ̂n); (2) for each set of samples, estimate a θ̂

(b)
n ; (3)

construct confidence intervals according to θ̂
(b)
n ’s. The validity of the Bootstrap method is based

on the following proposition. Denote ĝ
(b)
i,n(θ) = [P̂r(yi,n = 1|Xn, θ) − yn(ε

(b)
n , Xn, θ̂n)]q′i,n, where

Q
(b)
n (θ) ≡

∥∥∥Ω
1/2
n (θ) 1

n

∑n
i=1 ĝ

(b)
i,n(θ)

∥∥∥2

and θ̂
(b)
n ≡ arg minθ∈ΘQ

(b)
n (θ).

Proposition 4. (1) θ̂
(b)
n = θ0 + op(1). (2) When λ0 ∈ [0, Bλ),

√
n(θ̂

(b)
n − θ0) has the same limiting

distribution as that of
√
n(θ̂n − θ0).

4. Monte Carlo Simulation

In this section, we design some experiments to investigate finite sample properties of the MSM

estimator. The data generating process for the experiments is yi,n = 1(λ0

∑n
j=1 wij,nyj,n + β10 +

β20xi,n + εi,n > 0), where β10 = 0, β20 = 1, but λ0 is designed to be 0.6 or 0.3; xi,n’s i.i.d. N(0, 1),

N(0, (
√

2)2) or N(0, (
√

3)2), and εi,n’s are i.i.d. standard normally distributed. yi,n is generated

by the method mentioned in Section 2.1, namely, by iterating from (1, · · · , 1)′. Experiments show

that two to six iterations, and on average fewer than 4 iterations, are sufficient to generate yn =

(y1,n, · · · , yn,n)′ when sample size varies between 400 and 1600. Thus the algorithm is quite fast.

We use 1, xi,n and
∑n
j=1 wij,nxj,n as the IVs for the orthogonality moment conditions. Because the

number of IVs and the number of parameters are both 3, the parameters are exactly identified. The

choice of Ωn does not matter theoretically and thus the weighting matrix for moments can be the

3× 3 identity matrix. For the simulated probability P̂r(yi,n = 1|Xn, θ) = 1
R

∑R
r=1 yi,n(ε

(r)
n , Xn, θ),
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R is chosen to be 100 in order to balance efficiency, computational time and numerical precision,

where the last issue will be discussed later in this section. For each θ0 and n, 500 experiments are

performed to obtain sample means and sample standard deviations of estimators.

Individuals are assumed to be located on a
√
n×
√
n square integer lattice (chess board). In the

experiments, we try
√
n = 20, 30, 40. Thus, the corresponding sample sizes are 400, 900 and 1600.

W ∗ij,n = 1 iff the Euclidean distance between i and j is 1 and Wn is row-normalized from W ∗n .

Because yi,n(εn|Xn, θ) is an index function of θ, the criterion function Qn(θ) is a simple function,

a linear combination of some index functions. As a result, almost every θ is a local minimum of

Qn(θ) and it is not easy to reach the global minimum. In order to get θ̂n as close as to the global

minimum, on the one hand, we adopt a large R such that Qn(θ) is close to be a smooth function;

on the other hand, we choose carefully initial values for minimization. By some experiments, we

find that a probit model of yi,n on 1 and xi,n produces a not too bad initial guess of β20. Thus, we

use it as the initial value for β2. And we choose the initial values of (λ, β1) from {(0.1a, 0.2b−1.2) :

a = 1, 2, · · · , 13, b = 1, 2, · · · , 11} to minimize Qn(θ). To do so, it is not guaranteed that we can

obtain the global minimums, but experiments show that the estimators produced in this way have

satisfactory finite sample performance. Another reason for such choices of initial values is to balance

computational time and precision of estimators: a larger set will produce more initial values but

require more computational time.

From Table 1, we observe the following phenomena: (1) For smaller λ0, the bias of λ̂n is larger,

since the sample distribution of λ̂n is skewed as λ̂n > 0. (2) As sample sizes increases, the bias

of λ̂n decrease fast in most cases. (3) As sample sizes increase, the standard deviations decrease.

Overall, for larger sample sizes, the performance is closer to the asymptotic results.

To check the robustness of our estimator, which is based on the best NE being selected, we design

some experiments with misspecification of equilibrium selection rule. We select the minimum NE

to generate the dependent variable, but we estimate the model as if the maximum NE was selected.

The results are summarized in Table 2. When the sample size is 400, the performance under

misspecification is clearly worse, but not very bad. For example, when λ0 = 0.6, the biases for λ̂n

and β̂1,n under misspecification are respectively 0.0934 and -0.0941, but they are 0.0666 and -0.0534

when the specification is correct. When sample sizes are large, the difference is smaller, but overall,

the biases and RMSE under misspecification are slightly larger. The differences when λ0 = 0.6 are

13



slightly greater than that when λ0 = 0.3. The reason is that with greater λ0, the probability for εn

to be located in areas where multiple equilibria occur is larger.

Table 1: Monte Carlo Simulation Results

n λ = 0.6 β1 = 0 β2 = 1 λ = 0.3 β1 = 0 β2 = 1

x1n

400

bias 0.0666 -0.0534 -0.0036 0.1354 -0.0926 0.0014
std 0.4724 0.2958 0.1072 0.4263 0.2465 0.1074

RMSE 0.4771 0.3006 0.1072 0.4473 0.2633 0.1075

900

bias -0.0088 0.0060 0.0121 0.0221 -0.0144 0.0072
std 0.3361 0.2115 0.0773 0.2918 0.1673 0.0712

RMSE 0.3363 0.2116 0.0782 0.2926 0.1679 0.0716

1600

bias 0.0179 -0.0057 0.0072 0.0029 0.0042 0.0036
std 0.2525 0.1601 0.0492 0.2303 0.1303 0.0489

RMSE 0.2532 0.1602 0.0497 0.2303 0.1304 0.0490

x2n

400

bias 0.0781 -0.0560 0.0159 0.0980 -0.0653 0.0093
std 0.4952 0.2962 0.1054 0.4056 0.2319 0.0994

RMSE 0.5013 0.3014 0.1066 0.4173 0.2410 0.0998

900

bias 0.0161 -0.0066 0.0173 0.0355 -0.0176 0.0161
std 0.3435 0.2104 0.0712 0.2969 0.1692 0.0668

RMSE 0.3439 0.2105 0.0733 0.2990 0.1701 0.0687

1600

bias 0.0047 0.0021 0.0075 0.0032 0.0045 0.0067
std 0.2382 0.1471 0.0477 0.2200 0.1252 0.0449

RMSE 0.2382 0.1471 0.0483 0.2200 0.1253 0.0454

x3n

400

bias 0.0598 -0.0422 0.0141 0.1083 -0.0690 0.0118
std 0.4852 0.2920 0.0999 0.3992 0.2316 0.1008

RMSE 0.4889 0.2951 0.1009 0.4136 0.2416 0.1015

900

bias 0.0459 -0.0193 0.0211 0.0493 -0.0232 0.0153
std 0.3291 0.1969 0.0698 0.3104 0.1753 0.0696

RMSE 0.3323 0.1979 0.0730 0.3143 0.1768 0.0713

1600

bias 0.0111 0.0014 0.0079 0.0063 0.0037 0.0052
std 0.2408 0.1449 0.0472 0.2248 0.1265 0.0473

RMSE 0.2411 0.1449 0.0479 0.2249 0.1265 0.0476
Repetition=500, Simulation=100, β10 = 0, β20 = 1. xkn ∼ N(0, k).
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Table 2: Monte Carlo Simulation Results—-Misspecified Equilibrium

n λ = 0.6 β1 = 0 β2 = 1 λ = 0.3 β1 = 0 β2 = 1

x1n

400

bias 0.0934 -0.0941 0.0007 0.1439 -0.1044 0.0020
std 0.5027 0.3097 0.1109 0.4410 0.2527 0.1075

RMSE 0.5113 0.3237 0.1109 0.4638 0.2734 0.1075

900

bias 0.0070 -0.0294 0.0126 0.0234 -0.0218 0.0072
std 0.3488 0.2161 0.0770 0.2929 0.1684 0.0717

RMSE 0.3499 0.2181 0.0780 0.2938 0.1698 0.0720

1600

bias 0.0182 -0.0308 0.0067 0.0057 -0.0035 0.0036
std 0.2575 0.1615 0.0497 0.2318 0.1323 0.0491

RMSE 0.2582 0.1644 0.0502 0.2319 0.1324 0.0492

x2n

400

bias 0.0742 -0.0729 0.0144 0.1117 -0.0789 0.0093
std 0.4878 0.2914 0.1030 0.4283 0.2430 0.1008

RMSE 0.4934 0.3003 0.1040 0.4427 0.2555 0.1012

900

bias 0.0328 -0.0384 0.0174 0.0391 -0.0255 0.0158
std 0.3492 0.2101 0.0702 0.2997 0.1695 0.0666

RMSE 0.3508 0.2136 0.0723 0.3022 0.1714 0.0684

1600

bias 0.0203 -0.0277 0.0077 0.0062 -0.0027 0.0066
std 0.2368 0.1457 0.0476 0.2200 0.1245 0.0451

RMSE 0.2377 0.1483 0.0482 0.2201 0.1245 0.0456

x3n

400

bias 0.0586 -0.0601 0.0131 0.1136 -0.0760 0.0118
std 0.4824 0.2881 0.1007 0.4093 0.2364 0.1007

RMSE 0.4860 0.2943 0.1016 0.4248 0.2483 0.1013

900

bias 0.0570 -0.0432 0.0214 0.0527 -0.0298 0.0150
std 0.3348 0.1981 0.0703 0.3089 0.1741 0.0697

RMSE 0.3396 0.2028 0.0735 0.3134 0.1767 0.0713

1600

bias 0.0227 -0.0243 0.0082 0.0057 -0.0005 0.0053
std 0.2425 0.1439 0.0478 0.2272 0.1271 0.0470

RMSE 0.2436 0.1460 0.0485 0.2272 0.1271 0.0473
Repetition=500, Simulation=100, β10 = 0, β20 = 1. xkn ∼ N(0, k).

5. Conclusion

We consider a complete information binary choice game on an exogenous network in this paper.

We assume players select the maximum NE, which produces Pareto optimal equilibrium of the

game and is also an SCPE, to overcome the issue of multiple NE in a sample. We propose the

estimation of the model by the MSM. After investigating the NED property of yi,n and developing

some empirical process theory, we establish the consistency and asymptotically normality of the

MSM estimator. Simulation results indicate that when the sample has a moderate or large size,

the estimator has satisfactory finite sample properties.
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Our studies can be extended in several directions. (1) It is possible that players do not choose the

maximum NE, but reach other NE. In such cases, the problem might be partially identified. Because

all NE’s are between the maximum NE and the minimum one, we may consider moment inequality

estimation. (2) It is clear that our study can be generalized to the ordered probit or logistic models.

(3) Furthermore, relatively more efficient estimation methods than the MSM might be of interest

to be considered. (4) In our NED analysis, we take links between individuals as exogenously given,

so we have not taken values of elements in the weights matrix as endogenous. By expanding the

model to take into account of network formation, one may then take care of possible selectivity of

outcomes. (5) Because the GMM criterion function is a simple function, almost every θ ∈ Θ is a

local minimum point, it requires more investigation how to computationally improve the search of

the global minimum point. (6) We have shown that under the condition, δ̄l̄p < 1, we have NED,

on which our analysis is based on. However, if this condition fails, we do not know whether NED

still holds or not. As a result, we do not know the asymptotic properties of our estimator. Thus,

one of the possible future researches is on related properties when δ̄l̄p < 1 does not hold.

Appendices

A. Stochastic Equicontinuity for NED Random Fields

A.1. A Moment Inequality for NED Random Fields

In this section, let Zn = {Zi,n}ni=1 and εn = {εi,n}ni=1 be two generic random fields.

Assumption A.1. Let 2 < p0 6 q0 ∈ R and 2 6 w0 ∈ N satisfy 1
p0

+ w0−1
q0

= 1
2 . M ≡

max(1, supi,n ||Zi,n||Lq0 ) <∞; EZi,n = 0 for all i and n.

Assumption A.1 implies that q0 > 2w0. Because p0 6 q0, ι ≡ supi,n ||Zi,n||Lp0 6 M < ∞.

Next, we will establish a covariance inequality for products of Zi,n and a moment inequality for∑n
i=1 Zi,n.9

Lemma A.1. Suppose Assumption 1 holds. Let εn = {εi,n}ni=1 be an α-mixing random field with

α-mixing coefficient α(·, ·, ·). Zn satisfies Assumption A.1 and is an L2-NED random field on

9Similar results are Corollary A.2 and Theorem A.1 in Xu and Lee (2015b) with stronger regularity conditions
such as Zi,n’s are uniformly bounded. But they are not enough to establish SEC. Lemmas A.1 and A.2 relax some
of those restrictions and do not require that Zi,n is uniformly bounded. In this paper, we introduce ι to bound the
inequalities in Lemmas A.1 and A.2. ι is related to the construction of brackets when we show SEC.
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εn such that ||Zi,n − E[Zi,n|Fi,n(s)]||L2 6 ψ(s), where Fi,n(s) ≡ σ({εj,n : dij 6 s}). Denote

r = min{d(~im,~jl) : 1 6 m 6 u, 1 6 l 6 v} > 0. w ≡ u+ v 6 w0. Then, for any 0 < s < r/2,

|cov(Zi1,n · · ·Ziu,n, Zj1,n · · ·Zjv,n)| 6 4Mw−1[α1/p0(u, v, r − 2s) + wψ(s)
q0−2w+2
2q0−2w+2 ]ι.

Proof of Lemma A.1: Let Fu,n(s) ≡ σ(∪um=1Fim,n(s)), U = E[
∏u
m=1 Zim,n|Fu,n(s)], ∆U =∏u

m=1 Zim,n − U . Similarly, define Fv,n(s), V and ∆V for Zj1,n · · ·Zjv,n.

Let t ≡ u−1
w0−1q0 6 q0. Under Assumption A.1, by the generalized Hölder inequality and Lya-

punov’s inequality,

||Zi1,n · · ·Ziu,n||L2 6 ||Zi1,n||Lp0
u∏

m=2

||Zim,n||Lt 6 ι
u∏

m=2

||Zim,n||Lq0 6Mu−1ι. (A.1)

By Jensen’s inequality,

||U ||L2 = E1/2

{
E2

[
u∏
p=1

Zip,n

∣∣∣∣∣Fu,n(s)

]}
6 E1/2

{
E

[
u∏
p=1

Z2
ip,n

∣∣∣∣∣Fu,n(s)

]}
=

∥∥∥∥∥
u∏
p=1

Zip,n

∥∥∥∥∥
L2

6 ιMu−1.

Next, we will evaluate ||∆U ||L2 . Let A ≡ q0
w−1 >

q0
w0−1 > 2. For the following derivations, we use

the convention that
∏0
m=1 =

∏u
m=u+1 = 1.

||∆U ||L2 =

∥∥∥∥∥
u∏
p=1

Zip,n − E

[
u∏
p=1

Zip,n

∣∣∣∣∣Fu,n(s)

]∥∥∥∥∥
L2

6

∥∥∥∥∥
u∏
p=1

Zip,n −
u∏
p=1

E[Zip,n|Fip,n(s)]

∥∥∥∥∥
L2

6

∥∥∥∥∥
u∑
k=1

∣∣∣∣∣
{
k−1∏
m=1

E[Zim,n|Fim,n(s)]

}(
u∏

m=k+1

Zim,n

)
· {Zik,n − E[Zik,n|Fik,n(s)]}

∣∣∣∣∣
∥∥∥∥∥
L2

6
u∑
k=1

∥∥∥∥∥
{
k−1∏
m=1

E[Zim,n|Fim,n(s)]

}(
u∏

m=k+1

Zim,n

)
· {Zik,n − E[Zik,n|Fik,n(s)]}

∥∥∥∥∥
L2

62

u∑
k=1

∥∥∥∥∥
{
k−1∏
m=1

E[Zim,n|Fim,n(s)]

}(
u∏

m=k+1

Zim,n

)∥∥∥∥∥
A−2
2A−2

L2

· ‖Zik,n − E[Zik,n|Fik,n(s)]‖
A−2
2A−2

L2 ·

∥∥∥∥∥
{
k−1∏
m=1

E[Zim,n|Fim,n(s)]

}(
u∏

m=k+1

Zim,n

)
· {Zik,n − E[Zik,n|Fik,n(s)]}

∥∥∥∥∥
A

2A−2

LA

,

(A.2)

where the first inequality is by Theorem 10.12 in Davidson (1994), the second one is by Lemma

C.2 in Xu and Lee (2015b), the third one is by Minkowski’s inequality, and the fourth one is
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by ||Bρ||L2 6 2(||ρ||A−2
L2 ||B||A−2

L2 ||Bρ||ALA)1/(2A−2) when A > 2 (Lemma 17.15 in Davidson, 1994).

Similarly to Eq. (A.1),
∥∥∥{∏k−1

m=1 E[Zim,n|Fim,n(s)]} · (
∏u
m=k+1 Zim,n)

∥∥∥
L2
6Mu−1. Notice that

∥∥∥∥∥
{
k−1∏
m=1

E[Zim,n|Fim,n(s)]

}(
u∏

m=k+1

Zim,n

)
· {Zik,n − E[Zik,n|Fik,n(s)]}

∥∥∥∥∥
LA

6
k−1∏
m=1

‖E[Zim,n|Fim,n(s)]‖LAu ·
u∏

m=k+1

‖Zim,n‖LAu · ‖Zik,n − E[Zik,n|Fik,n(s)]‖LAu

6
k−1∏
m=1

‖E[Zim,n|Fim,n(s)]‖Lq0 ·
u∏

m=k+1

‖Zim,n‖Lq0 ·
(
‖Zik,n‖Lq0 + ‖E[Zik,n|Fik,n(s)]‖Lq0

)
62Mu,

where the first inequality is by the generalized Hölder inequality, the second one is by Lyapunov’s

inequality as Au 6 q0 and Minkowski’s inequality, and the last one is by Jensen’s inequality. Hence,

Eq. (A.2) implies that

||∆U ||L2 6 2u(Mu−1)
A−2
2A−2 ·ψ(s)

A−2
2A−2 ·(2Mu)

A
2A−2 = 2

3A−2
2A−2uM

2uA−2u−A+2
2A−2 ψ(s)

A−2
2A−2 6 4uMuψ(s)

A−2
2A−2 ,

where the last inequality is based on M > 1, 2uA−2u−A+2
2A−2 < u and 3A−2

2A−2 < 2 (implied by

A > 2). Similar conclusions hold for V , ∆V , and V + ∆V . Because A > q0
w0−1 , by Lyapunov’s

inequality and the generalized Hölder inequality, ||V ||Lq0/(w0−1) 6 ||V ||LA 6
∏v
m=1 ||Zjm,n||LAv 6∏v

m=1 ||Zjm,n||Lq0 6Mv. Consequently, by Lemma A.2 in Jenish and Prucha (2012),

|cov(U, V )| 6 4α1/p0(u, v, r − 2s)||U ||L2 ||V ||Lq0/(w0−1)

64α1/p0(u, v, r − 2s) · ιMu−1 ·Mv = 4ια1/p0(u, v, r − 2s)Mw−1.

By these inequalities and the Cauchy–Schwarz inequality,

|cov(Zi1,n · · ·Ziu,n, Zj1,n · · ·Zjv,n)| = |cov(U + ∆U, V + ∆V )|

6|cov(U, V )|+ |cov(U, ∆V )|+ |cov(∆U, V + ∆V )|

64ια1/p0(u, v, r − 2s)Mw−1 + ||U ||L2 ||∆V ||L2 + ||∆U ||L2 ||V + ∆V ||L2

64ια1/p0(u, v, r − 2s)Mw−1 + ιMu−1 · 4vMvψ(s)
A−2
2A−2 + 4uMuψ(s)

A−2
2A−2 · ιMv−1

=4Mw−1[α1/p0(u, v, r − 2s) + wψ(s)
q0−2w+2
2q0−2w+2 ]ι.
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With the covariance inequality in Lemma A.1, we are ready to establish a moment inequality

for E (
∑n
i=1 zi,n)

q
, which can be regarded as a spatial NED version of Lemma 3.1 in Andrews

and Pollard (1994). The proof for Lemma A.2 relies heavily on the techniques in the proof of

Theorem A.1 in Xu and Lee (2015b). From Lemma A.1 in Jenish and Prucha (2009), under

Assumption 1, there exists a constant Cd > 0 such that |{~j ∈ Rd : d(~i,~j) 6 r}| 6 Cd(brc+ 1)d and

|{~j ∈ Rd : r 6 d(~i,~j) 6 r + 1}| 6 Cd(brc + 1)d−1, where Cd is related to the topological structure

of the space individuals are located.

Lemma A.2. Let Assumption 1 hold. εn = {εi,n}ni=1 is an α-mixing random field with α-mixing coef-

ficient α(u, v, r) = (u+v)τ exp(−aεr) for some constants τ > 0 and aε > 0. Zn = {Zi,n}ni=1 satisfies

Assumption A.1 and it is an L2-NED random field on εn such that supi,n ||Zi,n−E(Zi,n|Fi,n(s))||L2 6

CZ exp(−aZs) for two positive constants CZ and aZ . Then there are two constants, CεZ0Md and

CτεZ0Md, where CεZ0Md depending on aε, CZ , p0, q0, M and d, and CτεZ0Md depending on aε,

aZ , CZ , τ , p0, q0, M and d, such that for any w ∈ N ∩ [2, w0],∣∣∣∣∣E
(

n∑
i=1

Zi,n

)w∣∣∣∣∣ 6 (2w − 2)!

(w − 1)!
CwεZ0Md[d(w − 1)]! max

{
(nιCτεZ0Md)

w/2, nιCτεZ0Md

}
.

Proof of Lemma A.2: Let Pw ≡ {{i1, i2, · · · , iw} ∈ Nw : 1 6 i1 6 i2 6 · · · 6 iw 6

n, but they are not all equal}. Pw is a collection of w natural numbers between 1 and n. For any

pw = {i1, i2, · · · , iw} ∈ Pw, by Lemma A.1 in Xu and Lee (2015b), we can partition its elements

into two non-empty mutually exclusive subsets I1(pw) and I2(pw), such that I1(pw)∪ I2(pw) = pw,

d[I1(pw), I2(pw)] = r > 0, and both ∪i∈I1(pw)B(~i, r/2) and ∪i∈I2(pw)B(~i, r/2) are path-connected.

These imply that the partition has the largest distance among other possible partitions; and, within

each partition, for any individual, there is another one such that their distance is 6 r. By Eq. (A.1),
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|EZwi,n| 6 ||Zwi,n||L2 6 ιMw−1. Then,

Aw(n) ≡
∑

16i16···iw6n

|EZi1,n · · ·Ziw,n|

6
∑

16j6n

|EZwij ,n|+
∑

pw∈Pw

∣∣∣∣∣∣E
∏

j∈I1(pw)

Zj,n · E
∏

j∈I2(pw)

Zj,n + cov(
∏

j∈I1(pw)

Zj,n,
∏

j∈I2(pw)

Zj,n)

∣∣∣∣∣∣
6nιMw−1 +

w−1∑
m=1

Am(n)Aw−m(n) +
∑

pw∈Pw

∣∣∣∣∣∣cov(
∏

j∈I1(pw)

Zj,n,
∏

j∈I2(pw)

Zj,n)

∣∣∣∣∣∣ .
(A.3)

For any natural number 1 6 i 6 n, define Pw(i) ≡ {{i1, i2, · · · , iw} ∈ Pw : i1 = i} and Pw(i, brc) ≡

{pw ∈ Pw(i) : brc 6 d(I1(pw), I2(pw)) < brc + 1}, where brc ≡ max{a ∈ Z : a 6 r}. Then

Pw = ∪n−1
i=1 Pw(i) = ∪n−1

i=1 ∪∞r=0 Pw(i, brc) and

∑
pw∈Pw

∣∣∣∣∣∣cov(
∏

j∈I1(pw)

Zj,n,
∏

j∈I2(pw)

Zj,n)

∣∣∣∣∣∣ 6
n−1∑
i=1

∞∑
brc=0

∑
pw∈Pw(i,brc)

∣∣∣∣∣∣cov(
∏

j∈I1(pw)

Zj,n,
∏

j∈I2(pw)

Zj,n)

∣∣∣∣∣∣ .
(A.4)

By Lemma A.1, where s is chosen such that aε(r−2s)
p0

= aZs
q0−2w0+2
2q0−2w0+2 ,∣∣∣∣∣∣cov(

∏
j∈I1(pw)

Zj,n,
∏

j∈I2(pw)

Zj,n)

∣∣∣∣∣∣ 6 4Mw−1

{
w

τ
p0 exp

[
−aε(r − 2s)

p0

]
+ w

(
CZe

−aZs
) q0−2w+2

2q0−2w+2

}
ι

64Mw−1

{
w

τ
p0 exp

[
−aε(r − 2s)

p0

]
+ w

(
CZe

−aZs
) q0−2w0+2

2q0−2w0+2

}
ι

=4ιMw−1(w
τ
p0 + wC

q0−2w0+2
2q0−2w0+2

Z ) exp(−CεZ0r) 6 4ιMw−1CτZ0e
w exp(−CεZ0r),

(A.5)

where the constant CεZ0 > 0 depends on aε, aZ , q0 and p0 and CτZ0 > 0 depends on τ , CZ , p0

and q0. Fixing the position i and considering Pw(i, brc) 6= ∅, we can establish a sequence of closed

balls with radius r so that each ball contains at least one another point in {1 6 i1 6 · · · iw 6 n}.

So all points in {1 6 i1 6 · · · iw 6 n} can be covered sequentially by (w− 1) balls. Thus, when i is
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fixed,
∑
pw∈Pw(i,brc) 1 6 {Cd(brc+ 1)d}w−1. By Eq. (A.4) and (A.5),

∑
pw∈Pw

∣∣∣∣∣∣cov(
∏

j∈I1(pw)

Zj,n,
∏

j∈I2(pw)

Zj,n)

∣∣∣∣∣∣
6
n−1∑
i=1

∞∑
brc=0

∑
pw∈Pw(i,brc)

4ιMw−1CτZ0e
w exp(−CεZ0 brc)

64nιCw−1
d Mw−1CτZ0e

w
∞∑
brc=0

(brc+ 1)d(w−1) exp(−CεZ0 brc)

64nιCw−1
d Mw−1CτZ0e

w
∞∑
k=0

ˆ k+2

k+1

xd(w−1) exp [−CεZ0(x− 2)] dx

64nι(C−1
d M−1CτZ0e

2CεZ0Cd−1
εZ0 )(CdeC

−d
εZ0M)w[d(w − 1)]!

Let CεZ0Md ≡ CdeC−dεZ0M and C̄εZ0Md ≡
{

min26w6w0(CdeC
−d
εZ0M)w[d(w − 1)]!

}−1
> 0. Then,

nιMw−1 + 4nι(C−1
d M−1CτZ0e

2CεZ0Cd−1
εZ0 )(CdeC

−d
εZ0M)w[d(w − 1)]!

6nι(C̄εZ0MdM
−1 + 4C−1

d M−1CτZ0e
2CεX0Cd−1

εZ0 )CwεZ0Md[d(w − 1)]!

≡nιCτεZ0MdC
w
εZ0Md[d(w − 1)]! ≡ Vw(n),

where CτεZ0Md ≡ C̄εZ0MdM
−1+4C−1

d M−1CτZ0e
2CεZ0Cd−1

εZ0 . Combining this result with Eq. (A.3),

we have Aw(n) 6
∑w−1
m=1Am(n)Aw−m(n) + Vw(n). By the Bohr–Mollerup theorem (Olver, 2010,

p.138), lnVw(n) is convex in w. Consequently, Vp 6 V
(p−2)/(q−2)
q V

(q−p)/(q−2)
2 . By “A Technical

Lemma”10 in Doukhan and Louhichi (1999, p. 336), Lemma 1211 in Doukhan and Louhichi (1999)

10If for every integers 2 6 p 6 q − 1, Vp 6 V
(p−2)/(q−2)
q V

(q−p)/(q−2)
2 , then for every integers m and q fulfilling

2 6 m 6 q − 1,

max(V
m/2
2 , Vm) max(V

(q−m)/2
2 , Vq−m) 6 max(V

q/2
2 , Vq). (A.6)

11Let (Uq)q>0 and (Vq)q>0 be two sequences of real numbers satisfying for some γ > 0, and for all q ∈ N,

Uq 6
∑q−1
m=1 UmUq−m + eqγVq , with U1 = 0 6 V1. Suppose {Vq} satisfies Eq. (A.6). Then for any 2 6 q ∈ N,

Uq 6
eqγ

q

(
2q − 2
q − 1

)
max(V

q/2
2 , Vq).
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is applicable to give a bound for Aw(n):∣∣∣∣∣E
(

n∑
i=1

Zi,n

)w∣∣∣∣∣ 6 w!Aw(n)

6w!
(2w − 2)!

[(w − 1)!]2
CwεZ0Md

w
max

{
(nιCτεX0Mdd!)w/2, nιCτεX0Md[d(w − 1)]!

}
6

(2w − 2)!

(w − 1)!
CwεZ0Md[d(w − 1)]! max

{
(nιCτεZ0Md)

w/2, nιCτεZ0Md

}
.

�

A.2. Stochastic Equicontinuity

SEC is useful for obtaining an empirical CLT and asymptotic distributions of estimators (Pakes

and Pollard, 1989, Andrews, 1994, Andrews and Pollard, 1994). Although there is a vast literature

on the weak convergence of independent random variables or stationary time series, e.g., van der

Vaart and Wellner (1996) and Dehling and Philipp (2002), there exist much fewer studies for

triangular sequences with both heterogeneity and serial correlation. Among them, Andrews and

Pollard (1994) examine the SEC of the empirical process of an α-mixing triangular sequence. We

extend their research to investigate NED random fields.

Let (Θ, ρ) be a totally bounded pseudometric space. {Zi,n(εn, θ)}ni=1 is a triangular array.

It is worth noticing that the problem we are studying is somewhat different from most studies

in empirical process. Conventionally, given a sequence of independent or mixing {εi}, the weak

convergence of the empirical process of {Zi(εi, θ)} is investigated. In spatial econometrics and

social network, usually dependent variables rely on all individuals’ characteristics. That is to

say, Zi,n depends on ε1,n, · · · , εn,n. For Z = {{Zi,n}ni=1}∞n=1 and Y = {{Yi,n}ni=1}∞n=1, denote

ρ(Z, Y ) = supi,n ||Zi,n − Yi,n||L2 . For simplicity of notations, let Zi,n(θ) ≡ Zi,n(εn, θ), ρ(θ) ≡

ρ(Z(θ)) ≡ supi,n ||Zi,n(θ)||L2 , and ρ(θ1, θ2) ≡ ρ(Z(θ1), Z(θ2)). The empirical process for Z(θ) is

denoted as νn(θ) ≡ νn(Z(θ)) ≡ 1√
n

∑n
i=1[Zi,n(θ)− EZi,n(θ)].

Definition 2. For any ε > 0, the Lp-bracketing number N(ε, Lp) ≡ N(ε,Θ, Lp) of Zn(θ) =

{Zi,n(θ)}ni=1 is the smallest value of N ∈ N for which there exist two sets of functions {Yi,n(θ
(ε)
j )}Nj=1

and {∆Yi,n(θ
(ε)
j )}Nj=1 evaluated at N points θεj for j = 1, · · · , N , so that (1) for any θ ∈ Θ,

there exists a natural number j ∈ [1, N ] such that |Zi,n(θ) − Yi,n(θ
(ε)
j )| 6 ∆Yi,n(θ

(ε)
j ) and (2)
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ρ(∆Y ) ≡ supi,j,n ||∆Yi,n(θ
(ε)
j )||Lp 6 ε. If there is no such an n, then N(ε, Lp) =∞.

Denote N(ε) ≡ N(ε, L2). One more convention will be useful to simplify arguments. If for some

θ ∈ Θ, there are j 6= j′ such that |Zi,n(θ) − Yi,n(θ
(ε)
j )| 6 ∆Yi,n(θj) and |Zi,n(θ) − Yi,n(θ

(ε)
j′ )| 6

∆Yi,n(θj′), then we only consider min{j, j′}. Then given ε > 0, θ → θ
(ε)
j is a map. Thus, we

can omit the j in Yi,n(θ
(ε)
j ) and ∆Yi,n(θ

(ε)
j ), and the dependence of θ(ε) on θ will be reflected by

θ directly. For instance, the approximating function for Zi,n(θ̄) is denoted as Yi,n(θ̄(ε)). If for

any ε > 0, N(ε, Lp) < ∞, then {Zn(θ), Lp} is totally bounded. Thus, the total boundedness is

a necessary condition for finite bracketing numbers. Lemma A.3 will be used repeatedly in our

subsequent proofs.

Lemma A.3. (Andrews and Pollard, 1994) For any w > 1 and arbitrary random variables Z1, · · · , Zn,

‖max16i6n |Zi|‖Lw 6 n
1/w max16i6n ‖Zi‖Lw .

Theorem A.1 presents our main theorem for SEC.

Theorem A.1. Let Assumption 1 hold. εn = {εi,n}ni=1 is an α-mixing random field with α-mixing

coefficient α(u, v, r) = (u + v)τ exp(−aεr) for some constants τ > 0 and aε > 0. (Θ, ρ) is a

pseudometric space. p0, q0 and w0 are defined in Assumption A.1 and denote r0 =
p−1
0 −q

−1
0

2−1−q−1
0

∈ (0, 1).

Suppose for any ε > 0, N(ε), the L2-bracketing number of Zn(θ) = {Zi,n(θ)}ni=1, does not depend

on n. For some even number w ∈ [2, w0],
´ 1

0
x−1/2N(x1/r0)1/wdx < ∞. Furthermore, Zn(θ),

{Yi,n(θ(ε))} and {∆Yi,n(θ(ε))} are all uniformly and geometrically L2-NED random fields on εn:

||Ui,n − E[Ui,n|Fi,n(s)]||L2 6 CZe
−aZs, where Ui,n = Zn(θ), Yi,n(θ(ε)) or ∆Yi,n(θ(ε)), and neither

CZ nor aZ depends on θ or ε. In addition, their Lq0 norms are 6 M uniformly in i, n, θ and ε.

Then, for any ε > 0, there exists a δ > 0, such that

lim sup
n→∞

∥∥∥∥∥ sup
ρ(θ1,θ2)<δ

|νn(θ1)− νn(θ2)|

∥∥∥∥∥
Lw

< ε.

Proof of Theorem A.1: We follow the idea in Andrews and Pollard (1994) to establish the

result. For any k ∈ N, construct N(2−k/r0) approximating functions {Yi,n(θ(k))}, where Yi,n(θ(k)) ≡

Yi,n(θ(2−k/r0 )), and corresponding {∆Yi,n(θ(k))} such that |Zi,n(θ) − Yi,n(θ(k))| 6 ∆Yi,n(θ(k)) for

all i, n and θ ∈ Θ, and ||∆Yi,n(θ(k))||L2 6 2−k/r0 . By Proposition 6.10 in Folland (1999),

||∆Yi,n(θ(k))||Lp0 6 ||∆Yi,n(θ(k))||r0L2 ||∆Yi,n(θ(k))||1−r0Lq0 6 2−kM1−r0 . (A.7)

23



We will prove this theorem in three steps. Let γ ∈ ( 1
2 , 1) be a universal constant and kn ≡ max{k ∈

N : 2k 6 nγ}.

Step 1: lim supn→∞
∥∥supθ∈Θ |νn(θ)− νn(Y (θ(kn)))|

∥∥
Lw

= 0.

The arguments for this step are as follows. By the definitions of ∆Yi,n(θ(k)) and kn,

sup
i,n,θ
||∆Yi,n(θ(kn))||Lp0 6M1−r02−kn = O(n−γ) = o(n−1/2).

We have νn(∆Y (θ(kn))) = 1√
n

∑n
i=1[∆Yi,n(θ(kn))− E ∆Yi,n(θ(k))]. Because

|νn(θ)− νn(Y (θ(kn)))| 6 1√
n

n∑
i=1

[∆Yi,n(θ(kn)) + E ∆Yi,n(θ(kn))]

=νn(∆Y (θ(kn))) +
2√
n

n∑
i=1

E ∆Yi,n(θ(kn)) 6 νn(∆Y (θ(kn))) + 2
√
n ·M1−r02−kn

=νn(∆Y (θ(kn))) + o(1),

∥∥supθ∈Θ |νn(θ)− νn(Y (θ(kn)))|
∥∥
Lw
6
∥∥supθ∈Θ νn(∆Y (θ(kn)))

∥∥
Lw

+ o(1). Here and in the follow-

ing, we use max to emphasize the finiteness (although |Θ| = ∞, there are only N(2−kn/r0) var-

ious θ(kn)’s). Since the NED of ∆Yi,n(θ(kn)) is uniformly in θ, by Eq. (A.7) and Lemma A.2,

supθ∈Θ ||
∑n
i=1[∆Y (θ(kn)) − E ∆Y (θ(kn))]||Lw 6 C1 max{(n2−kn)1/2, (n2−kn)1/w} = C1(n2−kn)1/2

for some constant C1 > 0, where the equality is built on n2−kn > n1−γ > 1. Hence, by Lemma A.3

and
´ 1

0
x−1/2N(x1/r0)1/wdx <∞, as n→∞,∥∥∥∥sup

θ∈Θ
νn(∆Y (θ(kn)))

∥∥∥∥
Lw
6 N(2−kn/r0)1/w max

θ∈Θ

∥∥∥νn(∆Y (θ(kn)))
∥∥∥
Lw

6N(2−kn/r0)1/wC12−kn/2 = C1

ˆ 2−kn

0

N(2−kn/r0)1/w2kn/2dx

6C1

ˆ 2−kn

0

N(x1/r0)1/wx−1/2dx→ 0.

Step 2: Given any ε > 0, there exists an m ∈ N that depends merely on ε but does not depend

on n, such that
∥∥maxθ∈Θ minφ(m):φ∈Θ

∣∣νn(Y (θ(kn)))− νn(Y (φ(m)))
∣∣∥∥
Lw
6 ε

6 for large enough n.

The arguments for this step are as follows. Because m is fixed, whose value will be deter-

mined later, eventually, kn > m as n goes to ∞, so we will only consider kn > m in the

following. We use the same chaining technique as in Andrews and Pollard (1994) to gap the

24



difference between kn and m. Since Y (θ(k)) = Y (θ̄(k)) ; Y (θ(k−1)) = Y (θ̄(k−1)), Y (θ(k)) −

Y (θ̄(k−1)) might have N(2−k)N(21−k) different values. In order to reduce the number of such

possible differences, we define θ[k] inductively from kn to m: θ[kn] ≡ θ(kn); for k 6 kn, θ[k−1] =

arg minφ(k−1):φ∈Θ ρ(Y (θ[k]), Y (φ(k−1))). Given m+ 1 6 k 6 kn, θ[k] = θ̄(k). Then

||Yi,n(θ[k])− Yi,n(θ[k−1])||L2 6 ||Yi,n(θ̄(k))− Yi,n(θ̄(k−1))||L2

6||Yi,n(θ̄(k))− Zi,n(θ̄)||L2 + ||Zi,n(θ̄)− Yi,n(θ̄(k−1))||L2 6 2−k/r0 + 2−(k−1)/r0 < 2 · 2−(k−1)/r0 .

As a result, by Proposition 6.10 in Folland (1999) and Minkowski’s inequality,

sup
i,n
||Yi,n(θ[k])− Yi,n(θ[k−1])||Lp0 6 sup

i,n
||Yi,n(θ[k])− Yi,n(θ[k−1])||r0L2 · ||Yi,n(θ[k])− Yi,n(θ[k−1])||1−r0Lq0

6 sup
i,n

[
2 · 2−(k−1)/r0

]r0 [
||Yi,n(θ[k])||Lq0 + ||Yi,n(θ[k−1])||Lq0

]1−r0
6 2M1−r02−(k−1).

Apply Lemma A.2 to {Yi,n(θ[k])−Yi,n(θ[k−1])−EYi,n(θ[k]) + EYi,n(θ[k−1])}ni=1, which is uniformly

and geometrically NED on εn. When k 6 kn, because n21−k > n2−kn > 1, by Lemma A.2, there

are constants CεZ0Md, Cτε0Md, C̄2 and C2 > 0 that do not depend on θ, k or n, such that∥∥∥∥∥ 1√
n

n∑
i=1

[Yi,n(θ[k])− Yi,n(θ[k−1])− EYi,n(θ[k]) + EYi,n(θ[k−1])]

∥∥∥∥∥
Lw

6
1√
n

[
(2w − 1)!

(w − 1)!
[d(w − 1)]!

]1/w

CεZ0Md max(C
1/2
τε0Md, C

1/w
τε0Md)·

max((n4M1−r02−(k−1))1/2, (n4M1−r02−(k−1))1/w)

6C̄2
1√
n

max((4M1−r0)1/2, (4M1−r0)1/w) max((n2−(k−1))1/2, (n2−(k−1))1/w) = C22−k/2.

Then by Lemma A.3,
∥∥maxθ

∣∣νn(Y (θ[k]))− νn(Y (θ[k−1]))
∣∣∥∥
Lw
6 N1/w(2−k/r0)C22−k/2. Hence,

∥∥∥∥max
θ

∣∣∣νn(Y (θ[kn]))− νn(Y (θ[m]))
∣∣∣∥∥∥∥
Lw
6

kn∑
k=m+1

∥∥∥∥max
θ

∣∣∣νn(Y (θ[k]))− νn(Y (θ([k−1]))
∣∣∣∥∥∥∥
Lw

6C2

∞∑
k=m+1

N1/w(2−k/r0)2−k/2 = 2C2

∞∑
k=m+1

ˆ 2−k

2−k−1

N1/w(2−k/r0)2k/2dx

62C2

∞∑
k=m+1

ˆ 2−k

2−k−1

N1/w(x1/r0)x−1/2dx = 2C2

ˆ 2−m−1

0

N1/w(x1/r0)x−1/2dx 6
ε

6
,
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where the last step holds if we choose m = m(ε) large enough. Step 2 is established.

Step 3: Define the following equivalence relation: θ and θ̄ are equivalent, denoted θ ∼ θ̄,

if and only if θ[m] = θ̄[m]. This equivalence relation partitions Θ into N(2−m/r0) equivalence

classes, E [1], · · · , E [N(2−m/r0)]. Steps 1 and 2 imply
∥∥supθ∈Θ

∣∣νn(θ)− νn(Y (θ[m]))
∣∣∥∥
Lw

< ε
5 for

large enough n. Consequently,∥∥∥∥sup
θ∼θ̄

∣∣νn(θ)− νn(θ̄)
∣∣∥∥∥∥
Lw

6

∥∥∥∥sup
θ∼θ̄

[
|νn(θ)− νn(θ[m])|+ |νn(θ̄[m])− νn(θ̄)|

]∥∥∥∥
Lw

6

∥∥∥∥sup
θ
|νn(θ)− νn(θ[m])|

∥∥∥∥
Lw

+

∥∥∥∥sup
θ̄

|νn(θ̄)− νn(θ̄[m])|
∥∥∥∥
Lw

<
2ε

5
.

Define the distance of two classes by d(E [i], E [j]) ≡ inf{ρ(θ1, θ2) : θ1 ∈ E [i], θ2 ∈ E [j]}. For any

δ > 0, there exists θij ∈ E [i] and θji ∈ E [j] such that ρ(θij , θji) < d(E [i], E [j]) + δ. If θ ∈ E [i],

θ̄ ∈ E [j] and ρ(θ, θ̄) < δ, then ρ(θij , θji) < 2δ and

|νn(θ)− νn(θ̄)| 6 |νn(θ)− νn(θij)|+ |νn(θij)− νn(θji)|+ |νn(θji)− νn(θ̄)|

62 sup
φ∼φ̄
|νn(φ)− νn(φ̄)|+ max{|νn(φij)− νn(φji)| : ρ(φij , φji) < 2δ}.

{Zk,n(φij) − Zk,n(φji) − EZk,n(φij) + EZk,n(φji)}nk=1 is geometrically L2-NED (NED coefficient

e−aZs) on εn with NED scaling factor 2CZ . Its Lq0 norm is bounded by 4M . By Proposition 6.10

in Folland (1999), ||Zk,n(φij)−Zk,n(φji)−EZk,n(φij) + EZk,n(φji)||Lp0 6 (4M)1−r0(2δ)r0 . Apply

Lemma A.2 to νn(φij)−νn(φji) = 1√
n

∑n
k=1[Zk,n(φij)−Zk,n(φji)−EZk,n(φij)+EZk,n(φji)], with

ι there equal to (4M)1−r0(2δ)r0 . There are two constants C̄3 > 0 and C3 > 0, such that when

n > (4M)r0−1(2δ)−r0 ,

||νn(φij)− νn(φji)||Lw 6
1√
n
C̄3 max{[n(4M)1−r0(2δ)r0 ]1/2, [n(4M)1−r0(2δ)r0 ]1/w} = C3δ

r0/2.

Because m does not depend on n and there are less than N2(2−m/r0) pairs of |νn(φij) − νn(φji)|,

by Lemma A.3, when n > (4M)r0−1(2δ)−r0 ,

∥∥νn(θ)− νn(θ̄)
∥∥
Lw
6

4ε

5
+N2/w(2−m/r0) max{||νn(φij)− νn(φji)||Lw : ρ(φij , φji) < 2δ}

6
4ε

5
+N2/w(2−m/r0)C3δ

r0/2 < ε,

provided that δ = δ(ε) is chosen to be smaller enough. �
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B. Asymptotic Distribution via SEC

As can be seen from Eq. (6), the criterion function for optimization is not continuous. Therefore,

the usual Taylor expansion technique for obtaining asymptotic distributions of estimators does

not work. Similar phenomena often appear in simulated estimation for discrete choice models.

Theorem 3.3 in Pakes and Pollard (1989) gives a general approach for such cases. We generalize it

to allow heterogeneity, so that it is applicable for our estimator in the main text. The nonstochastic

criterion function Ḡn(θ) in Pakes and Pollard (1989) does not depending on n, which holds for i.i.d.

and stationary data. In Theorem B.1, heterogeneity is reflected by the n in Ḡn(θ). In addition, to

control heterogeneity, condition (vi) is also needed, which is trivial for stationary data. The proof for

Theorem B.1 is essentially minor modifications of that for Theorem 3.3 in Pakes and Pollard (1989).

This theorem is also applicable to non-differentiable functions. In this section, || · || denotes not

only the Euclidean norm for a vector, but also the Frobenius matrix norm: ||(aij)|| ≡ (
∑
i,j a

2
ij)

1/2.

||Ax|| 6 ||A|| · ||x|| for any vector x and every conformable matrix A.

Theorem B.1. Let Gn(θ) be a stochastic function and Ḡn(θ) be a non-stochastic one. Ḡn(θ0) = 0

for all n and lim infn→∞ |Ḡn(θ)| > 0 for all θ 6= θ0. Suppose θ̂n is a consistent estimate of θ0, i.e.,

θ̂n
p−→ θ0. If (i) ||Gn(θ̂n)|| 6 op(n

−1/2) + infθ ||Gn(θ)||, (ii) Γn ≡ ∂Ḡn(θ0)/∂θ′ → Γ and Γ has full

column rank, (iii) for any nonstochastic positive sequence δn → 0, sup||θ−θ0||<δn ||Gn(θ)− Ḡn(θ)−

Gn(θ0)||/[n−1/2 + ||Gn(θ)|| + ||Ḡn(θ)||] = op(1), (iv)
√
nGn(θ0)

d−→ N(0, V ), (v) θ0 ∈ Θ0, where

Θ0 denotes the interior of the parameter space Θ ∈ RK , and (vi) for each k, ∂2Ḡk,n(θ)/∂θ∂θ′ is

uniformly bounded in both n and θ, where Ḡk,n(θ) is the kth entry of Ḡn(θ), then
√
n(θ̂n − θ0)

d−→

N(0, (Γ′Γ)−1Γ′V Γ(Γ′Γ)−1).

Proof of Theorem B.1: (1) We first show the
√
n-consistency. θ̂n

p−→ θ0 implies that we

can choose δn slow enough such that Pr{||θ̂n − θ0|| > δn} → 0. Then, by the triangle inequal-

ity and condition (iii), ||Ḡn(θ̂n)|| − ||Gn(θ̂n)|| − ||Gn(θ0)|| 6 ||Gn(θ̂n) − Ḡn(θ̂n) − Gn(θ0)|| 6

op(
1√
n

) + op(||Gn(θ̂n)||) + op(||Ḡn(θ̂n)||). Thus, ||Ḡn(θ̂n)||[1 − op(1)] 6 op(
1√
n

) + ||Gn(θ̂n)||[1 +

op(1)] + ||Gn(θ0)||. By conditions (i) and (iv), ||Gn(θ0)|| = Op(
1√
n

) and ||Gn(θ̂n)|| 6 op(
1√
n

) +

infθ ||Gn(θ)|| 6 op(
1√
n

) + ||Gn(θ0)|| = Op(
1√
n

). It follows that ||Ḡn(θ̂n)|| = Op(
1√
n

). Conditions

(ii) and (vi) imply that ||Ḡn(θ̂n)|| > C||θ̂n − θ0|| for some constant C > 0 with large probability as

θ̂n is near enough to θ0 when n is large enough. Hence,
√
n||θ̂n − θ0|| = Op(1).

27



(2) Next, we establish the asymptotic normality of
√
n(θ̂n − θ0). Define Ln(θ) ≡ Γn(θ − θ0) +

Gn(θ0). By Taylor’s theorem with the Lagrange form of the remainder and conditions (ii) and (vi),

|Ḡk,n(θ̂n)− Γk,n(θ̂n − θ0)| = |(θ̂n − θ0)′
∂2Ḡk,n(θ̄n)

∂θ∂θ (θ̂n − θ0)| = Op(||θ̂n − θ0||2), where θ̄n is a convex

combination of θ0 and θ̂n. Then

||Gn(θ̂n)− Ln(θ̂n)|| 6 ||Gn(θ̂n)− Ḡn(θ̂n)−Gn(θ0)||+ ||Ḡn(θ̂n)− Γn(θ̂n − θ0)||

6op(
1√
n

) + op(||Gn(θ̂n)||) + op(||Ḡn(θ̂n)||) + op(||θ̂n − θ0||) = op(
1√
n

).
(B.1)

Define θ∗n ≡ arg minθ∈Θ ||Ln(θ)|| = θ0 − (Γ′nΓn)−1Γ′nGn(θ0). Then by conditions (ii) and (iv),
√
n(θ∗n − θ0)

d−→ N(0, (Γ′Γ)−1Γ′V Γ(Γ′Γ)−1). Thus, it suffices to show θ̂n = θ∗n + op(
1√
n

).

Because θ∗n = θ0 + Op(n
−1/2), condition (v) implies that Pr(θ∗n ∈ Θ0) → 1. By Ḡn(θ0) = 0

and condition (vi), ||Ḡn(θ∗n)|| 6 ||Γn(θ∗n − θ0)|| + op(||θ∗n − θ0||) = Op(
1√
n

). By condition (iii),

||Gn(θ∗n)|| − ||Ḡn(θ∗n)|| − ||Gn(θ0)|| 6 op( 1√
n

) + op(||Gn(θ∗n)||+ ||Ḡn(θ∗n)||). Thus, by condition (iv)

and the previous two results, ||Gn(θ∗n)|| = Op(
1√
n

). Hence,

||Gn(θ∗n)− Ln(θ∗n)|| 6 ||Gn(θ∗n)− Ḡn(θ∗n)−Gn(θ0)||+ ||Ḡn(θ∗n)− Γn(θ∗n − θ0)||

6op(
1√
n

) + op(||Gn(θ∗n)||) + op(||Ḡn(θ∗n)||) + op(||θ∗n − θ0||) = op(
1√
n

).
(B.2)

By Eq. (B.1) and (B.2), ||Ln(θ̂n)|| 6 ||Gn(θ̂n)|| + op(
1√
n

) 6 ||Gn(θ∗n)|| + op(
1√
n

) 6 ||Ln(θ∗n)|| +

op(
1√
n

). Squaring both sides, we have ||Ln(θ̂n)||2 = ||Ln(θ∗n)||2+op(n
−1). Because θ∗n ≡ arg minθ∈Θ ||Ln(θ)||,

by the Pythagorean Theorem, ||Ln(θ̂n)||2 = ||Ln(θ∗n)||2 + ||Ln(θ∗n) − Ln(θ̂n)||2 = ||Ln(θ∗n)||2 +

||Γn(θ∗n − θ̂n)||2. Therefore, by condition (ii), ||θ̂n − θ∗n|| = op(
1√
n

). �

Lemma B.1. Let {An(θ) : θ ∈ Θ} be a family of sequences of nonsingular, random matrices.

There exists a nonsingular, nonrandom matrix A such that supθ:||θ−θ0||<δn ||An(θ) − A|| = op(1),

whenever {δn} is a sequence of positive numbers that converges to zero. If conditions (ii), (iii), (iv)

and (vi) of Theorem B.1 are satisfied by Gn(θ) and Ḡn(θ), then they also hold if Gn(θ) is replaced

by An(θ)Gn(θ) and Ḡn(θ) is replaced by AḠn(θ).

Proof of Lemma B.1: Conditions (ii), (iv) and (vi) are obvious. The proof for condition (iii)

is almost the same as that for Lemma 3.5 in Pakes and Pollard (1989), thus it is omitted. �

The following theorem extends the preceding Theorem B.1 to the case where the true parameter

28



vector is on the boundary of a parameter space, which has not been covered in Pakes and Pollard

(1989).

Theorem B.2. Let the parameter space be Θ = [0, B1]×Θ−1 and θ0 = (θ10, θ−1,0) satisfies θ10 = 0

and θ−1,0 ∈ Θ0
−1, where Θ0

−1 denotes the interior of Θ−1 ⊆ RK−1. Let Gn(θ) be a stochastic

function and Ḡn(θ) be a non-stochastic one. Ḡn(θ0) = 0 for all n and lim infn→∞ |Ḡn(θ)| > 0 for

all θ 6= θ0. Suppose θ̂n with θ̂1,n > 0 is a consistent estimate of θ0, i.e., θ̂n
p−→ θ0.

If (i) ||Gn(θ̂n)|| 6 op(n
−1/2) + infθ∈Θ ||Gn(θ)||, (ii) Γn ≡ ∂Ḡn(θ0)/∂θ′ → Γ and Γ has full

column rank, (iii) for any nonstochastic positive sequence δn → 0, sup||θ−θ0||<δn ||Gn(θ)− Ḡn(θ)−

Gn(θ0)||/[n−1/2 + ||Gn(θ)|| + ||Ḡn(θ)||] = op(1), (iv)
√
nGn(θ0)

d−→ N(0, V ), and (v) for each k,

∂2Ḡk,n(θ)/∂θ∂θ′ is uniformly bounded in both n and θ, where Ḡk,n(θ) is the kth entry of Ḡn(θ), then

the limiting distribution of
√
n(θ̂n − θ0) is as follows: with 1

2 probability, it has a regular truncated

normal density N(0, (Γ′Γ)−1Γ′V Γ(Γ′Γ)−1) with only the first coordinate truncated (θ1 > 0); with

another 1
2 probability, its distribution is degenerated for the first component to be θ1 = 0, and the re-

maining component is a (K−1)-dimensional normal density N(0, (Γ′−1Γ−1)−1Γ′−1V Γ−1(Γ′−1Γ−1)−1),

where Γ−1 is the submatrix of Γ without the first column.

Proof of Theorem B.2: (1) The
√
n-consistency still holds because it does not rely on Con-

dition (v) in Theorem B.1, as can be seen from the proof of Theorem B.1.

(2) Next, we establish the asymptotic distribution of
√
n(θ̂n − θ0). By the same argument

as in Theorem B.1, ||Gn(θ̂n) − Ln(θ̂n)|| = op(n
−1/2). Define Ln(θ) ≡ Γn(θ − θ0) + Gn(θ0) and

θ∗n ≡ arg minθ∈RK :θ1>0 ||Ln(θ)||. If we first minimize ||Ln(θ)|| without the constraint θ1 > 0, then

θ∗n = θ0 − (Γ′nΓn)−1Γ′nGn(θ0). If [θ0 − (Γ′nΓn)−1Γ′nGn(θ0)]1 6 0, then θ∗1,n = 0 with the the

constraint θ1 > 0. Then, θ∗−1,n = θ−1,0 − (Γ′−1,nΓ−1,n)−1Γ′−1,nG−1,n(θ0). As as result, under

conditions (ii) and (iv), the limiting distribution of
√
n(θ∗n−θ0) is the one described in the theorem.

Thus, it suffices to show θ̂n = θ∗n + op(n
−1/2).

Because θ∗n = θ0 + Op(n
−1/2), θ−1,0 ∈ Θ0

−1 implies that Pr(θ∗−1,n ∈ Θ0
−1) → 1. By the same

argument as in Theorem B.1, ||Ln(θ̂n)||2 = ||Ln(θ∗n)||2+op(n
−1). Because θ∗n ≡ arg minθ∈Θ ||Ln(θ)||,

when θ∗1,n > 0, by the same argument as in Theorem B.1, ||Ln(θ̂n)||2 = ||Ln(θ∗n)||2 +||Γn(θ∗n− θ̂n)||2.
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When θ∗1,n = 0,

||Ln(θ̂n)||2 = ||Ln(θ∗n)||2 + ||Ln(θ∗n)− Ln(θ̂n)||2 + 2Ln(θ∗n)′[Ln(θ̂n)− Ln(θ∗n)]

=||Ln(θ∗n)||2 + ||Γn(θ∗n − θ̂n)||2 + 2Ln(θ∗n)′Γn(θ̂n − θ∗n) > ||Ln(θ∗n)||2 + ||Γn(θ∗n − θ̂n)||2,

where the last inequality is by θ∗n ≡ arg minθ∈Θ ||Ln(θ)|| subject to the non-negative constraint.

In both cases, ||Γn(θ∗n − θ̂n)||2 6 ||Ln(θ̂n)||2 − ||Ln(θ∗n)||2 = op(n
−1). Therefore, by condition (ii),

||θ̂n − θ∗n|| = op(n
−1/2). �

C. Probabilities of the Best NE and Its First and Second

Order Derivatives

C.1. An Example with 3 Individuals

To motivate the materials in the following two subsections, we consider a game with 3 players first

to obtain some intuitions: y1 = 1(λ1
y2+y3

2 + x1 + ε1 > 0), y2 = 1(λ2
y1+y3

2 + x2 + ε2 > 0) and

y3 = 1(λ3
y1+y2

2 + x3 + ε3 > 0). The equilibrium results according to the values of ε2 are shown in

Table 3. From Table 3, we have

Pr(y1 = 1|ε2 > −x2) = [1− F (−x1 − λ1)][1− F (−x3 − λ3)] + [1− F (−x1 −
λ1

2
)]F (−x3 − λ3),

Pr(y1 = 1|−x2−
λ2

2
< ε2 < −x2) = [1−F (−x1−λ1)][1−F (−x3−λ3)]+[1−F (−x1−

λ1

2
)]F (−x3−λ3),

Pr(y1 = 1|−x2−λ2 < ε2 < −x2−
λ2

2
) = [1−F (−x1−λ1)][1−F (−x3−λ3)]+[1−F (−x1)]F (−x3−λ3),

Pr(y1 = 1|−x2−λ2 < ε2 < −x2−
λ2

2
) = [1−F (−x1)]+[F (−x1)−F (−x1−

λ1

2
)][1−F (−x3−

λ3

2
)],

where F (·) is the CDF of εi, which is i.i.d. for i = 1, 2, 3. These probabilities do not depend on x2

or λ2, except its ranges, because when we calculate these probabilities on the plane of (ε1, ε3), the

cutting lines, e.g., ε1 = −x1 and ε3 = −x3 − λ3

2 , do not depend on x2 or λ2.
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Table 3: The Maximum NE (y1, y2, y3)

ε2 > −x2

ε1 < −x1 − λ1 −x1 − λ1 < ε1 < −x1 − λ1
2 −x1 − λ1

2 < ε1 < −x1 ε1 > −x1

ε3 > −x3 (0,1,1) (1,1,1) (1,1,1) (1,1,1)
−x3 − λ3

2 < ε3 < −x3 (0,1,1) (1,1,1) (1,1,1) (1,1,1)
−x3 − λ3 < ε3 < −x3 − λ3

2 (0,1,0) (1,1,1) (1,1,1) (1,1,1)
ε3 < −x3 − λ3 (0,1,0) (0,1,0) (1,1,0) (1,1,0)

−x2 − λ2
2 < ε2 < −x2

ε1 < −x1 − λ1 −x1 − λ1 < ε1 < −x1 − λ1
2 −x1 − λ1

2 < ε1 < −x1 ε1 > −x1

ε3 > −x3 (0,1,1) (1,1,1) (1,1,1) (1,1,1)
−x3 − λ3

2 < ε3 < −x3 (0,1,1) (1,1,1) (1,1,1) (1,1,1)
−x3 − λ3 < ε3 < −x3 − λ3

2 (0,0,0) (1,1,1) (1,1,1) (1,1,1)
ε3 < −x3 − λ3 (0,0,0) (0,0,0) (1,1,0) (1,1,0)

−x2 − λ2 < ε2 < −x2 − λ2
2

ε1 < −x1 − λ1 −x1 − λ1 < ε1 < −x1 − λ1
2 −x1 − λ1

2 < ε1 < −x1 ε1 > −x1

ε3 > −x3 (0,0,1) (1,1,1) (1,1,1) (1,1,1)
−x3 − λ3

2 < ε3 < −x3 (0,0,0) (1,1,1) (1,1,1) (1,1,1)
−x3 − λ3 < ε3 < −x3 − λ3

2 (0,0,0) (1,1,1) (1,1,1) (1,1,1)
ε3 < −x3 − λ3 (0,0,0) (0,0,0) (0,0,0) (1,0,0)

ε2 < −x2 − λ2

ε1 < −x1 − λ1 −x1 − λ1 < ε1 < −x1 − λ1
2 −x1 − λ1

2 < ε1 < −x1 ε1 > −x1

ε3 > −x3 (0,0,1) (0,0,1) (1,0,1) (1,0,1)
−x3 − λ3

2 < ε3 < −x3 (0,0,0) (0,0,0) (1,0,1) (1,0,1)
−x3 − λ3 < ε3 < −x3 − λ3

2 (0,0,0) (0,0,0) (0,0,0) (1,0,0)
ε3 < −x3 − λ3 (0,0,0) (0,0,0) (0,0,0) (1,0,0)

C.2. First Order Derivatives

Lemma C.1. Suppose
∑K
i=1 ai = 0, sup16i6K |ai| 6 M , and max16i<j6K |bi − bj | < ε. Then

|
∑K
i=1 aibi| 6 (K − 1)Mε.

Proof of Lemma C.1:
∣∣∣∑K

i=1 aibi

∣∣∣ =
∣∣∣∑K

i=1 aib1 +
∑K
i=1 ai(bi − b1)

∣∣∣ =
∣∣∣∑K

i=2 ai(bi − b1)
∣∣∣ 6∑K

i=2 |ai| · |bi − b1| 6 ε
∑K
i=2 |ai| = (K − 1)Mε. �

RecallBf = supx f(x), BW = supn ||Wn||∞, BX = supi,k,n ||xik,n||L2 andBQ = supi,k,n ||qik,n||Lq0 .

Notice that xi,n is part of qi,n. Recall |{~j ∈ Rd : d(~i,~j) 6 r}| 6 Cd(brc + 1)d and |{~j ∈ Rd : r 6

d(~i,~j) 6 r+1}| 6 Cd(brc+1)d−1 for any r > 0 and for a constant Cd > 0. These relationships imply

that |{~j ∈ Rd : d(~i,~j) 6 md̄0}| 6 Cdd̄0m
d−1 and |{~j ∈ Rd : md̄0 6 d(~i,~j) 6 (m+1)d̄0}| 6 Cdd̄0m

d−1

for some constant Cdd̄0 and for all m ∈ N.
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Lemma C.2.
∂ Pr(yi,n=1|Xn,θ)

∂λ 6 BfBWCdd̄0m0 l̄pδ̄ < ∞ and
∂ Pr(yi,n=1|θ)

∂λ 6 BfBWCdd̄0m0 l̄pδ̄ for

some constant Cdd̄0m0 l̄pδ̄ depending only on d, l̄p, δ̄, d̄0 andm0.
∣∣∣∂ E(yi,nqil,n|θ)

∂λ

∣∣∣ 6 BQBfBWCdd̄0m0 l̄pδ̄.

|∂ Pr(yi,n = 1|θ)/∂βj | 6 BfBXCdd̄0m0 l̄pδ̄ and
∣∣∣∂ E(yi,nqil,n|θ)

∂βj

∣∣∣ 6 BfBQBXCdd̄0m0 l̄pδ̄.

Proof of Lemma C.2: Consider the system yi,n = 1(λi
∑n
j=1 wij,nyj,n + xi,nβ + εi,n > 0)

first, where 0 6 λi 6 Bλ. After establishing the properties of
∂ Pr(yi,n=1|Xn)

∂λj
, where the probability

depends on parameter values, which are dropped for convenient and simplified notations, we will

let λ1 = · · · = λn = λ. Given m ∈ N with m > m0, if we change some values of {εj,n : dij > m}

from ε̃
(i,>m)
n to ε̄

(i,>m)
n , by Proposition 1,

Pr
[
ε(i,6m)
n : yi,n(ε(i,6m)

n , ε̃(i,>m)
n , Xn) 6= yi,n(ε(i,6m)

n , ε̄(i,>m)
n , Xn)

∣∣∣ ε̃(i,>m)
n , ε̄(i,>m)

n , Xn

]
6 (l̄pδ̄)

m.

As a result, given a k with dik > md̄0, if we only change the value of εk,n from a to b (but keep all

the other εj,n’s), then

Pr
[
ε(i,6m)
n : yi,n(ε(i,6m)

n , a, ε(i,>m)\{k}
n , Xn) 6= yi,n(ε(i,6m)

n , b, ε(i,>m)\{k}
n , Xn)

∣∣∣ ε(i,>m)\{k}
n , Xn

]
6 (l̄pδ̄)

m.

Taking expectation with respect to ε
(i,>m)\{k}
n , we have that for any real numbers a and b,

|Pr(yi,n = 1|εk,n = a,Xn)− Pr(yi,n = 1|εk,n = b,Xn)| 6 (l̄pδ̄)
m. (C.1)

The critical values for εk,n are −xk,nβ − λC0 > −xk,nβ − λC1 > · · · > −xk,nβ − λCp(k), where

C0 = 0 and {C0, · · · , Cp(k)} ∈ {
∑
wkj,nyj,n : yj,n ∈ {0, 1}}. Let C−1 = −∞ and Cp(k)+1 =∞. Let

bjk ≡ Pr(yi,n = 1| − xk,nβ − λkCj < εk,n < −xk,nβ − λkCj−1, Xn). Then

Pr(yi,n = 1|xn) =

p(k)+1∑
j=0

bjk Pr(−xk,nβ − λkCj < εk,n < −xk,nβ − λkCj−1|Xn). (C.2)

Because yk,n = 1(λk
∑n
j=1 wkj,nyj,n+xk,nβ+ εk,n > 0), it is the sign of λk

∑n
j=1 wij,nyj,n+xk,nβ+

εk,n that determines yk,n. Given εk,n ∈ (−xk,nβ − λCj ,−xk,nβ − λCj−1) and any profile y−k,n ∈

{0, 1}n−1, individual k is indifferent on the value of εk,n, because the sign of λk
∑
l wkl,nyl,n +

xk,nβ + εk,n is the same when εk,n varies over (−xk,nβ − λCj ,−xk,nβ − λCj−1). Thus, Pr(yi,n =

1|εk,n = a,Xn) is identical for all a ∈ (−xk,nβ − λCj ,−xk,nβ − λCj−1). This implies that for any
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a ∈ (−xk,nβ − λCj ,−xk,nβ − λCj−1),

bjk =

ˆ −xk−λCj−1

−xk−λCj
Pr(yi,n = 1|εk,n)dF (εk,n| − xk,nβ − λCj < εk,n < −xk,nβ − λCj−1, Xn)

= Pr(yi,n = 1|εk,n = a, xn)

ˆ −xk−λCj−1

−xk−λCj
dF (εk,n| − xk,nβ − λCj < εk,n < −xk,nβ − λCj−1, Xn)

= Pr(yi,n = 1|εk,n = a,Xn).

As a result, by Eq. (C.1), max06i<j61+p |bik − bjk| 6 (l̄pδ̄)
m. In addition, once the interval

(−xk,nβ − λCj ,−xk,nβ − λCj−1) is given, we can analyze the maximum NE in Rn−1, the space of

ε−k,n. Using the critical values of individuals {1, · · · , n}\{k}, we can find zones where yi,n = 1 and

calculate bjk. Because the critical values of individuals {1, · · · , n}\{k} do not depend on λk and

xk, ∂bjk/∂λk = ∂bjk/∂(xk,nβ) = 0. So,

∂ Pr(yi,n = 1|Xn)

∂λk
=

p(k)+1∑
j=0

∂ Pr(−xk,nβ − λkCj < εk,n < −xk,nβ − λkCj−1|Xn)

∂λk
bjk. (C.3)

Because
∣∣∣∂ Pr(−xk,nβ−λkCj<εk,n<−xk,nβ−λkCj−1|Xn)

∂λk

∣∣∣ 6 BfBW , and

p(k)+1∑
j=0

∂ Pr(−xk,nβ − λkCj < εk,n < −xk,nβ − λkCj−1|Xn)

∂λk

=
∂

∂λk

p(k)+1∑
j=0

Pr(−xk,nβ − λkCj < εk,n < −xk,nβ − λkCj−1|Xn) =
∂1

∂λk
= 0,

it follows by Lemma C.1 that 0 6 ∂ Pr(yi,n=1|Xn)
∂λk

6 [p(k)+1]BfBW (l̄pδ̄)
m when dik > md̄0 and m >

m0. Also, in general, because max06i<j61+p |bik − bjk| < 1, by Lemma C.1, 0 6 ∂ Pr(yi,n=1|Xn)
∂λk

6

[p(k)+1]BfBW . By Assumptions 1 and 7, Bp ≡ supk,n p(k) <∞. Hence, when λ1 = · · · = λn = λ,

∂ Pr(yi,n = 1|Xn)

∂λ
=

n∑
k=1

∂ Pr(yi,n = 1|Xn)

∂λk
=

 ∑
k:dik6md̄0

+

∞∑
m=m0

∑
k:md̄0<dik6(m+1)d̄0

 ∂ Pr(yi,n = 1|Xn)

∂λk

6Cdd̄0m
d · (Bp + 1)BfBW +

∞∑
m=m0

Cdd̄0m
d−1 · (Bp + 1)BfBW (l̄pδ̄)

m

6(Bp + 1)BfBWCdd̄0

[
md +

∞∑
m=m0

md−1(l̄pδ̄)
m

]
= BfBWCdd̄0m0 l̄pδ̄ <∞,
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where Cdd̄0m0 l̄pδ̄ depends only on d, l̄p, δ̄, d̄0 and m0, since Bp relies merely on d and d̄0. Hence,

∂ Pr(yi,n=1)
∂λ = E

∂ Pr(yi,n=1|Xn)
∂λ 6 BfBWCdd̄0m0 l̄pδ̄. As a result,∣∣∣∣∂ E(yi,nqil,n)

∂λ

∣∣∣∣ =

∣∣∣∣∂ E[qil,n E(yi,n|Xn)]

∂λ

∣∣∣∣ =

∣∣∣∣E [qil,n ∂ E(yi,n|Xn)

∂λ

]∣∣∣∣
6E

[
|qil,n|

∣∣∣∣∂ E(yi,n|Xn)

∂λ

∣∣∣∣] 6 BQBfBWCdd̄0m0 l̄pδ̄.

Next,
∂ Pr(yi,n=1|Xn)

∂(xk,nβ) =
∑p+1
j=0

∂ Pr(−xk,nβ−λkCj<εk,n<−xk,nβ−λkCj−1|Xn)
∂(xk,nβ) bjk. Because |∂ Pr(−xk,nβ−

λkCj < εk,n < −xk,nβ − λkCj−1|Xn)/∂(xk,nβ)| 6 Bf and
∑p+1
j=0 ∂ Pr(−xk,nβ − λkCj < εk,n <

−xk,nβ − λkCj−1|Xn)/∂(xk,nβ) = ∂1
∂(xk,nβ) = 0, by Lemma C.1, we have 0 6 ∂ Pr(yi,n=1|Xn)

∂(xk,nβ) 6

(p(k) + 1)Bf and 0 6 ∂ Pr(yi,n=1|Xn)
∂(xk,nβ) 6 (p(k) + 1)Bf (l̄pδ̄)

m when dik > md̄0 and m > m0. For any

1 6 j 6 K, ∣∣∣∣∂ Pr(yi,n = 1)

∂βj

∣∣∣∣ =

∣∣∣∣∣E
n∑
k=1

∂ Pr(yi,n = 1|Xn)

∂(xk,nβ)

∂(xk,nβ)

∂βj

∣∣∣∣∣
=

∣∣∣∣∣∣
 ∑
k:dik6md̄0

+

∞∑
m=m0

∑
k:md̄0<dik6(m+1)d̄0

E
∂ Pr(yi,n = 1|Xn)

∂(xk,nβ)

∂(xk,nβ)

∂βj

∣∣∣∣∣∣
6BfBX(Bp + 1)Cdd̄0

[
md +

∞∑
m=m0

md−1(l̄pδ̄)
m

]
= BfBXCdd̄0m0 l̄pδ̄ <∞.

(C.4)

As a result,∣∣∣∣∂ E(yi,nqil,n)

∂βj

∣∣∣∣ =

∣∣∣∣∣E qil,n
n∑
k=1

∂ Pr(yi,n = 1|Xn)

∂(xk,nβ)

∂(xk,nβ)

∂βj

∣∣∣∣∣
=

∣∣∣∣∣∣
 ∑
k:dik6md̄0

+

∞∑
m=m0

∑
k:md̄0<dik6(m+1)d̄0

E

[
qil,n

∂ Pr(yi,n = 1|Xn)

∂(xk,nβ)

∂(xk,nβ)

∂βj

]∣∣∣∣∣∣
6BfBQBX(Bp + 1)Cdd̄0

[
md +

∞∑
m=m0

md−1(l̄pδ̄)
m

]
= BfBQBXCdd̄0m0 l̄pδ̄ <∞.

�

C.3. Second Order Derivatives

For two second order continuously differentiable functions g(x) = (g1(x), · · · , gm(x))′ : Rn → Rm

and F (·) : Rm → R, we have ∂2F (g(x))
∂xk∂xh

= ∂g(x)′

∂xh

∂2F (g(x))
∂g∂g′

∂g(x)
∂xk

+ ∂F (g(x))
∂g′

∂2g(x)
∂xk∂xh

for h, k = 1, · · · , n,
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where x = (x1, · · · , xn) and ′ represents transpose of matrices, not derivative.

Lemma C.3. supi,n,θ,Xn

∣∣∣∂2 Pr(yi,n=1|Xn,θ)
∂λ2

∣∣∣ 6 B2
WCdm0d̄0f l̄pδ̄, supi,n,l,θ,Xn,j1,j2

∣∣∣∂2 E(yi,nqil,n)
∂βj1∂βj2

∣∣∣ 6
B3
QCdm0d̄0f l̄pδ̄, and supi,j,l,n,θ,Xn

∣∣∣∂2 E(yi,nqil,n)
∂λ∂βj

∣∣∣ 6 BXBQBWCdm0d̄0f l̄pδ̄.

Proof of Lemma C.3: First, we calculate
∂2 Pr(yi,n=1|Xn)

∂λ2
k

. Differentiating Eq. (C.3) with

respect to λk, we have

∂2 Pr(yi,n = 1|Xn)

∂λ2
k

=

p(k)+1∑
j=0

∂2 Pr(−xk,nβ − λkCj < εk,n < −xk,nβ − λkCj−1|Xn)

∂λ2
k

bjk. (C.5)

Because
∣∣∣∂2 Pr(−xk,nβ−λkCj<εk,n<−xk,nβ−λkCj−1)

∂λ2
k

∣∣∣ = |C2
j−1f

′(−xk,nβ − λkCj−1) − C2
j f
′(−xk,nβ −

λkCj)| 6 2Bf ′B
2
W , where Bf ′ ≡ maxx |f ′(x)|, and 0 6 bjk 6 1, we have |∂2 Pr(yi,n = 1|Xn)/∂λ2

k| 6

2Bf ′(p(k) + 2)B2
W . When dik > md̄0 and m > m0 , by Lemma C.1,∣∣∣∣∂2 Pr(yi,n = 1|Xn)

∂λ2
k

∣∣∣∣ 6 2Bf ′B
2
W [p(k) + 1](l̄pδ̄)

m.

To calculate ∂2 Pr(yi,n = 1|Xn)/∂λk1∂λk2 with k1 6= k2, without loss of generality, assume that

dik1 > dik2 . Denote the critical values for εkj ,n (j = 1 or 2) as −xkj ,nβ − λC
(j)
0 > −xkj ,nβ −

λC
(j)
1 > · · · > −xkj ,nβ − λC

(j)
p(k), where C

(j)
0 = 0 and {C(j)

0 , · · · , C(j)
p(k)} ∈ {

∑
wkj l,nyl,n : yl,n ∈

{0, 1}}. Let C
(j)
−1 = −∞ and C

(j)
p(k(j))+1 = ∞. Let Aj1k1,n = Pr(−xk1,nβ − λk1C

(1)
j1

< εk1,n <

−xk1,nβ − λk1C
(1)
j1−1|Xn), Aj2k2,n = Pr(−xk2,nβ − λk2C

(2)
j2

< εk2,n < −xk2,nβ − λk2C
(2)
j2−1|Xn), and

bj1j2,n = Pr(yi,n = 1| − xk1,nβ − λk1C
(1)
j1

< εk1,n < −xk1,nβ − λk1C
(1)
j1−1,−xk2,nβ − λk2C

(2)
j2

<

εk2,n < −xk2,nβ − λk2C
(2)
j2−1, Xn). Then Pr(yi,n = 1) =

∑p(k1)+1
j1=0

∑p(k2)+1
j2=0 Aj1k1,nAj2k2,nbj1j2,n.

Given the intervals that εk1,n and εk2,n are located, and given other players’ actions, yk1,n and yk2,n

are determined, the values of εk1,n and εk2,n do not matter. In addition, given the intervals that

εk1,n and εk2,n are located, we can divide Rn−2, the space of (εj,n)j 6=k1,k2 , into some cuboids by the

critical values of individuals in {1, · · · , n}\{k1, k2}. Then we can calculate the maximum NE in

each cuboid and obtain bj1j2,n. Because the critical values of individuals in {1, · · · , n}\{k1, k2} do

not contain λk1 , λk2 , xk1 and xk2 , the partial derivatives of bj1j2,n with respect to these variables

equal 0. As a result,

∂2 Pr(yi,n = 1|Xn)

∂λk1∂λk2
=

p(k1)+1∑
j1=0

p(k2)+1∑
j2=0

∂Aj1k1,n
∂λk1

∂Aj2k2,n
∂λk2

bj1j2,n.
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When dik1 > md̄0 and dik2 > m > m0, by Proposition 1(1), max16j1<j′16p(k1) |bj1j2,n −

bj′1j2,n| 6 δ̄(l̄pδ̄)
m. On the other hand, when dik1 > md̄0, dik2 6 m and m > m0, we have

max16j1<j′16p(k1) |bj1j2,n−bj′1j2,n| 6 (l̄pδ̄)
m by Proposition 1(2). So, when dik1 > md̄0 and m > m0,

max16j1<j′16p(k1) |bj1j2,n − bj′1j2,n| 6 (l̄pδ̄)
m. Notice that maxl=1,2 max16jl6p(kl) |∂Ajlkl,n/∂λkl | 6

Bf ||Wn||∞. Consequently, when dik1 > md̄0 and m > m0, by Lemma C.1,

∣∣∣∣∂2 Pr(yi,n = 1|Xn)

∂λk1∂λk2

∣∣∣∣ 6 p(k2)+1∑
j2=0

∣∣∣∣∂Aj2k2,n∂λk2

∣∣∣∣
∣∣∣∣∣∣
p(k1)+1∑
j1=0

∂Aj1k1,n
∂λk1

bj1j2,n

∣∣∣∣∣∣
6
p(k2)+1∑
j2=0

∣∣∣∣∂Aj2k2,n∂λk2

∣∣∣∣ (p(k1) + 1)BfBW (l̄pδ̄)
m 6 (p(k1) + 1)(p(k2) + 1)B2

fB
2
W (l̄pδ̄)

m.

Because bj1j2,n ∈ [0, 1], we always have

∣∣∣∣∂2 Pr(yi,n = 1|Xn)

∂λk1∂λk2

∣∣∣∣ 6
p(k1)+1∑

j1=0

∣∣∣∣∂Aj1k1,n∂λk1

∣∣∣∣
p(k2)+1∑

j2=0

∣∣∣∣∂Aj2k2,n∂λk2

∣∣∣∣
 6 (p(k1) + 2)(p(k2) + 2)B2

fB
2
W .

By the bounds for ∂2 Pr(yi,n = 1|Xn)/∂λ2
k and ∂2 Pr(yi,n = 1|Xn)/∂λk1∂λk2 ,

∣∣∣∣∂2 Pr(yi,n = 1|Xn)

∂λ2

∣∣∣∣ =

∣∣∣∣∣∣
∑
k1,k2

∂2 Pr(yi,n = 1|Xn)

∂λk1∂λk2

∣∣∣∣∣∣
6

∣∣∣∣∣∑
k

∂2 Pr(yi,n = 1|Xn)

∂λ2
k

∣∣∣∣∣+ 2

∣∣∣∣∣∣
∑
k1

∑
k2 6=k1:dik26dik1

∂2 Pr(yi,n = 1|Xn)

∂λk1∂λk2

∣∣∣∣∣∣
6

 ∑
k:dik6m0d̄0

+

∞∑
m=m0

∑
k:md̄0<dik6(m+1)d̄0

∣∣∣∣∂2 Pr(yi,n = 1|Xn)

∂λ2
k

∣∣∣∣+
2

 ∑
k1:dik16md̄0

∑
k2 6=k1:dik26dik1

+

∞∑
m=m0

∑
k1:md̄0<dik16(m+1)d̄0

∑
k2 6=k1:dik26dik1

∣∣∣∣∂2 Pr(yi,n = 1|Xn)

∂λk1∂λk2

∣∣∣∣
6B2

W

[
Cdd̄0m

d
0 · 2Bf ′(Bp + 2) +

∞∑
m=m0

Cdd̄0m
d−1 · 2Bf ′(Bp + 1)(l̄pδ̄)

m

]
+

2B2
W

[
(Cdd̄0m

d
0)2 · (Bp + 2)2B2

f +

∞∑
m=m0

Cdd̄0m
d−1 · Cdd̄0(m+ 1)d · (Bp + 1)2B2

f (l̄pδ̄)
m

]

6B2
WCdm0d̄0f l̄pδ̄ <∞,
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for some constant Cdm0d̄0f l̄pδ̄ not depending on i, n, λ or xn.

Similarly, |∂2 Pr(yi,n = 1|Xn)/∂(xk,nβ)2| 6 2(p(k)+2)Bf ′ and |∂2 Pr(yi,n = 1|Xn)/∂(xk,nβ)∂λk| 6

2Bf ′(p(k) + 2)BW . When dik > md̄0 and m > m0, |∂2 Pr(yi,n = 1|Xn)/∂(xk,nβ)2| 6 2(p(k) +

1)Bf ′(l̄pδ̄)
m and |∂2 Pr(yi,n = 1|Xn)/∂(xk,nβ)∂λk| 6 2(p(k) + 1)BWBf ′(l̄pδ̄)

m. For k1 6= k2,

|∂2 Pr(yi,n = 1|Xn)/∂λk1∂(xk2,nβ)| 6 (p(k1)+2)(p(k2)+2)B2
fBW and |∂2 Pr(yi,n = 1|Xn)/∂(xk1,nβ)∂(xk2,nβ)| 6

(p(k1) + 2)(p(k2) + 2)B2
f . For k1 6= k2, when dik2 6 dik1 , dik1 > md̄0 and m > m0

|∂2 Pr(yi,n = 1|Xn)/∂(xk1,nβ)∂(xk2,nβ)| 6 (p(k1) + 1)(p(k2) + 1)B2
f (l̄pδ̄)

m,

|∂2 Pr(yi,n = 1|Xn)/∂λk1∂(xk2,nβ)| 6 (p(k1) + 1)(p(k2) + 1)BWB
2
f (l̄pδ̄)

m,

|∂2 Pr(yi,n = 1|Xn)/∂(xk1,nβ)∂λk2 | 6 (p(k1) + 1)(p(k2) + 1)BWB
2
f (l̄pδ̄)

m.

With the above results, we have

∣∣∣∣∂2 E(yi,nqij,n)

∂βj1∂βj2

∣∣∣∣ =

∣∣∣∣∣∣E
∑
k1,k2

∂2 Pr(yi,n = 1|Xn)

∂(xk1,nβ)∂(xk2,nβ)
xj1k1,nxj2k2,nqij,n

∣∣∣∣∣∣
6

∣∣∣∣∣E∑
k

∂2 Pr(yi,n = 1|Xn)

∂(xk,nβ)2
xj1k,nxj2k,nqij,n

∣∣∣∣∣+ 2

∣∣∣∣∣∣E
∑
k1

∑
k2 6=k1:dik26dik1

∂2 Pr(yi,n = 1|Xn)

∂(xk1,nβ)∂(xk2,nβ)
xj1k1,nxj2k2,nqij,n

∣∣∣∣∣∣
6

 ∑
k:dik6m0d̄0

+

∞∑
m=m0

∑
k:md̄0<dik6(m+1)d̄0

E

∣∣∣∣∂2 Pr(yi,n = 1|Xn)

∂(xk,nβ)2
xj1k,nxj2k,nqij,n

∣∣∣∣+
2

 ∑
k1:dik16md̄0

+

∞∑
m=m0

∑
k1:md̄0<dik16(m+1)d̄0

 ∑
k2 6=k1:dik26dik1

E

∣∣∣∣ ∂2 Pr(yi,n = 1|Xn)

∂(xk1,nβ)∂(xk2,nβ)
xj1k1,nxj2k2,nqij,n

∣∣∣∣
6B3

Q

[
Cdd̄0m

d
0 · 2Bf ′(Bp + 2) +

∞∑
m=m0

Cdd̄0m
d−1 · 2Bf ′(Bp + 1)(l̄pδ̄)

m

]
+

2B3
Q

[
(Cdd̄0m

d
0)2 · (Bp + 2)2B2

f +

∞∑
m=m0

Cdd̄0m
d−1 · Cd(m+ 1)d · (Bp + 1)2B2

f (l̄pδ̄)
m

]

6B3
QCdm0d̄0f l̄pδ̄ <∞,

and
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∣∣∣∣∂2 E(yi,nqij,n)

∂λ∂βj

∣∣∣∣ =

∣∣∣∣∣∣E
∑
k1,k2

∂2 Pr(yi,n = 1|Xn)

∂λk1∂(xk2,nβ)
xjk2,nqij,n

∣∣∣∣∣∣
6

∣∣∣∣∣E∑
k

∂2 Pr(yi,n = 1|Xn)

∂λk∂(xk,nβ)
xjk,nqij,n

∣∣∣∣∣+

∣∣∣∣∣∣E
∑

k1

∑
k2:dik26dik1

+
∑
k2

∑
k1:dik16dik2

 ∂2 Pr(yi,n = 1|Xn)

∂λk1∂(xk2,nβ)
xjk2,nqij,n

∣∣∣∣∣∣
6

 ∑
k:dik6m0d̄0

+

∞∑
m=m0

∑
k:md̄0<dik6(m+1)d̄0

E

∣∣∣∣∂2 Pr(yi,n = 1|Xn)

∂λk∂(xk,nβ)
xjk,nqij,n

∣∣∣∣+ ∑
k1:dik16md̄0

+

∞∑
m=m0

∑
k1:md̄0<dik16(m+1)d̄0

 ∑
k2 6=k1:dik26dik1

E

∣∣∣∣∂2 Pr(yi,n = 1|Xn)

∂λk1∂(xk2,nβ)
xjk2,nqij,n

∣∣∣∣+ ∑
k2:dik26md̄0

+

∞∑
m=m0

∑
k2:md̄0<dik26(m+1)d̄0

 ∑
k1 6=k2:dik16dik2

E

∣∣∣∣∂2 Pr(yi,n = 1|Xn)

∂λk1∂(xk2,nβ)
xjk2,nqij,n

∣∣∣∣
6BXBQBW

[
Cdd̄0m

d
0 · 2Bf ′(Bp + 2) +

∞∑
m=m0

Cdd̄0m
d−1 · 2Bf ′(Bp + 1)(l̄pδ̄)

m

]
+

2BXBQBW

[
(Cdd̄0m

d
0)2 · (Bp + 2)2B2

f +

∞∑
m=m0

Cdd̄0m
d−1 · Cdd̄0(m+ 1)d · (Bp + 1)2B2

f (l̄pδ̄)
m

]

6BXBQBWCdm0d̄0f l̄pδ̄ <∞.

�

D. Proofs for the Main Text

Lemma D.1. For all real numbers a1, a2, b1, b2, |max(a1, a2)−max(b1, b2)| 6 max(|a1 − b1|, |a2 −

b2|) 6 |a1 − b1|+ |a2 − b2|.

Proof of Lemma D.1: If a1 − a2 and b1 − b2 have the same sign, then (a1 > a2) ∧ (b1 > b2)

or (a1 6 a2) ∧ (b1 6 b2). Clearly, the conclusion holds.

If a1 − a2 and b1 − b2 have different signs, without loss of generality, we assume a1 > a2

and b1 6 b2. The following are all possible cases: b1 6 b2 6 a2 6 a1, b1 6 a2 6 b2 6 a1,

b1 6 a2 6 a1 6 b2, a2 6 b1 6 b2 6 a1, a2 6 b1 6 a1 6 b2, and a2 6 a1 6 b1 6 b2. One can check

that the conclusion holds under each case. �

Lemma D.2. {X(1)
i,n}ni=1 and {X(2)

i,n}ni=1 are two random fields on {εi,n}ni=1. If ||X(j)
i,n−E[X

(j)
i,n |Fi,n(s)]||L2 6
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d
(j)
i,nψ

(j)(s) for j = 1, 2, where Fi,n(s) = σ({εj,n : dij 6 s}), then

||max
j=1,2

X
(j)
i,n − E[max

j=1,2
X

(j)
i,n |Fi,n(s)]||L2 6 (d

(1)
i,n + d

(2)
i,n) max

j=1,2
ψ(j)(s).

Proof of Lemma D.2: By Lemma D.1, the conclusion holds because NED is kept under

Lipschitz transformations. �

Proof of Proposition 1: If {j : ∞ > dij > m} = ∅, ȳi,n = yi,n(ε
(i,6m)
n , x

(i,6m)
n ) = ỹi,n. The

conclusions hold trivially.

Next, we consider the case {j : dij = m+1} 6= ∅. Denote χi,n(θi, xi,n) ≡ 1(−λi||Wn||∞−xi,nβ 6

εi,n < −xi,nβ). When χi,n(θi, xi,n) = 0, yi,n(εn, Xn) will not be affected by other players’ decisions.

When χi,n(θi, xi,n) = 1, it is possible (but not necessary) that other players’ actions will affect

player i’s decision. Call an individual i is susceptible at (θi, xi,n) iff χi,n(θi, xi,n) = 1; otherwise,

i is unaffected at (θi, xi,n) iff χi,n(θi, xi,n) = 0. Because of the i.i.d. of εi,n, conditional on Xn,

χi,n(θi, xi,n) and χj,n(θj , xj,n) are independent for i 6= j.

First, we shall argue that, if ȳi,n 6= ỹi,n, then there exists a susceptible path (i.e., a path

of susceptible individuals at (θ,Xn)) jm → jm−1 → · · · → j1 → i with dijm = m. Suppose

the conclusion does not hold. Denote A ⊆ {j : dij < m} the set of all individuals of whom

each will be on at least one susceptible path ending in i. Then A ∩ {j : dij = m} = ∅ and

B ≡ {j ∈ {j : dij 6 m}\A : dkj = 1 for some k ∈ A} 6= ∅. From the definitions of A and B,

B is unaffected. Thus, when we consider the behaviors of individuals in A ∪ B, we can ignore

the behavior of the rest players. Now consider the subgame formed by individuals in A ∪ B. By

the unique best NE for the subgame, ȳn|A∪B = ỹn|A∪B . This contradicts ȳi,n 6= ỹi,n. Hence, the

conclusion follows.

Next, we will show conclusions (1) and (2). Recall supi,n,θi,xi,n E(χi,n(θi, xi,n)|xi,n) = δ̄ for

some δ̄ ∈ (0, 1). Denote j0 = i.
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(1)

Pr
(
ȳi,n 6= ỹi,n|x(i,6m)

n , x̄(i,>m)
n , x̃(i,>m)

n , ε̄(i,>m)
n , ε̃(i,>m)

n

)
6Pr(∃ a susceptible path jm → jm−1 → · · · → j1 → iwith dijm = m|x(i,6m)

n )

6
∑

jm→jm−1→···→j1→i:dijm=m

Pr(i, j1, · · · , jm are all susceptible|x(i,6m)
n )

6
∑

jm→jm−1→···→j1→i:dijm=m

m∏
p=0

Pr(χjp = 1|x(i,6m)
n )

6
∑

jm→jm−1→···→j1→i:dijm=m

m∏
p=0

δ̄ 6 δ̄(l̄pδ̄)
m.

(2) Similarly,

Pr
(
ȳi,n 6= ỹi,n| εk,n, x(i,6m)

n , x̄(i,>m)
n , x̃(i,>m)

n , ε̄(i,>m)
n , ε̃(i,>m)

n

)
6

∑
jm→jm−1→···→j1→i:dijm=m

Pr(i, j1, · · · , jmare all susceptible|εk,n, x(i,6m)
n )

6
∑

jm→jm−1→···→j1→i:dijm=m

m∏
p=0

Pr(χjp = 1|εk,n, x(i,6m)
n ).

(D.1)

Conditional on {εk,n, x(i,6m)
n }, Pr(χjp = 1|εk,n, x(i,6m)

n ) = Pr(χjp = 1|x(i,6m)
n ) 6 δ̄ for jp 6= k,

and Pr(χk = 1|εk,n, x(i,6m)
n ) 6 1 no matter whether k is susceptible or not. So

∏m
p=0 Pr(χjp =

1|εk,n, x(i,6m)
n ) 6 δ̄m and Pr

(
ȳi,n 6= ỹi,n| εk,n, x(i,6m)

n , x̄
(i,>m)
n , x̃

(i,>m)
n , ε̄

(i,>m)
n , ε̃

(i,>m)
n

)
6 (l̄pδ̄)

m.�

Proof of Corollary 1: Given a pair of nonstochastic (x̃
(i,>m)
n , ε̃

(i,>m)
n ), denote ỹi,n(θ) =

yi,n(ε
(i,6m)
n , ε̃

(i,>m)
n , x

(i,6m)
n , x̃

(i,>m)
n |θ) as a function of ε

(i,6m)
n and x

(i,6m)
n . By Proposition 1,

E |yi,n(θ)− ỹi,n(θ)| 6 (l̄pδ̄)
m. Hence, by Theorem 10.12 in Davidson (1994, p.151),

||yi,n(θ)− E[yi,n(θ)|xj,n, εj,n, dij 6 m]||2L2 6 ||yi,n(θ)− ỹi,n(θ)||2L2 6 (l̄pδ̄)
m.

Then, the first conclusion holds. Because {j : dij 6 m} ⊆ {j : dij 6 md̄0} under Assump-

tion 1, by Theorem 10.12 in Davidson (1994), ||yi,n(θ) − E[yi,n(θ)|Fi,n(md̄0)]||L2 6 ||yi,n(θ) −

E[yi,n(θ)|xj,n, εj,n, dij 6 m]||L2 6 (δ̄l̄p)
m/2. �
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Proof of Corollary 2: The first conclusion holds because

||yi,n(θ)xik,n − E[yi,n(θ)xik,n|xj,n, εj,n, dij 6 m]||2L2

6E
{
x2
ik,n E

{[
yi,n(θ)− E

(
yi,n(θ)|xj,n, εj,n, dij 6 m

)]2∣∣∣Xn

}}
6 E

[
x2
ik,n(δ̄l̄p)

m
]
6 B2

X(δ̄l̄p)
m,

where the second inequality follows by similar arguments as in Corollary 1. The rest conclusions

hold similarly. �

Proof of Proposition 2: Because Wn 6= 0 from Assumption 3, there exists an i with∑n
j=1 wij,n > 0. By presumption, E[Pr(yi,n = 1|Xn, θ) − yi,n|Xn] = Pr(εn : yi,n(εn, Xn, θ) =

1|Xn)− Pr(εn : yi,n(εn, Xn, θ0) = 1|Xn) = 0. Denote F (·) as the CDF of the εi,n. Given xj1,n (for

all j 6= i), we consider the case that xj2,nβ20 → −∞ for all j with dij = 1. Thus,

1− F (−xi,nβ0) = Pr(εn : yi,n(εn, Xn, θ) = 1|Xn). (D.2)

We discuss the identification by three mutually exclusive but exhaustive situations. (1) If sign(β20) =

sign(β2), then xj2,nβ20 → −∞ implies xj,nβ → −∞. Thus, 1 − F (−xi,nβ0) = 1 − F (−xi,nβ).

Because F (·) is strictly increasing, xi,nβ = xi,nβ0. So, E(x′i,nxi,n)β = E(x′i,nxi,n)β0. Because

E(x′i,nxi,n) has full rank, β = β0. Next, given xj1,n, consider xj2,nβ20 → +∞ for all j with

dij = 1. Then, Pr(εn : yi,n(εn, Xn, θ) = 1|Xn) = Pr(εn : yi,n(εn, Xn, θ0) = 1|Xn) implies

F (−λ
∑n
j=1 wij,n − xi,nβ0) = F (−λ0

∑n
j=1 wij,n − xi,nβ0). Hence, λ0 = λ. (2) If sign(β20) =

−sign(β2), xj2,nβ20 → −∞ implies xj2,nβ2 → +∞. Then Pr(εn : yi,n(εn, Xn, θ0) = 1|Xn) =

Pr(εn : yi,n(εn, Xn, θ) = 1|Xn) implies F (−xi,nβ0) = F (−λ
∑n
j=1 wij,n − xi,nβ). So,

xi,nβ0 = λ

n∑
j=1

wij,n + xi,nβ. (D.3)

Next, let xj2,nβ20 → +∞. Then xj2,nβ2 → −∞ and F (−λ0

∑n
j=1 wij,n − xi,nβ0) = F (−xi,nβ).

Thus,

λ0

n∑
j=1

wij,n + xi,nβ0 = xi,nβ. (D.4)

By Eq. (D.3) and (D.4), λ0

∑n
j=1 wij,n = −λ

∑n
j=1 wij,n. Because λ0 > 0, λ > 0 and

∑n
j=1 wij,n >

0, we have λ = λ0 = 0. In consequence, Eq. (D.3) implies that β = β0. (3) When β2 = 0, the LHS

of Eq. (D.2) depends on xi2,n but the RHS does not depend on xi2,n. This is impossible. �
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Proof of Theorem 1: Under Assumptions 5 and 9 on compact parameter spaces and identi-

fication, to establish the conclusion, it is sufficient to show that supθ∈Θ |Qn(θ) − Q̄n(θ)| p−→ 0 and

that {Q̄n(θ)}∞n=K+1 is equicontinuous. Consider supθ∈Θ |Qn(θ)− Q̄n(θ)| p−→ 0 first. Notice

sup
θ∈Θ
|Qn(θ)− Q̄n(θ)| 6 sup

θ∈Θ

∣∣∣∣∣∣
∥∥∥∥∥Ω1/2

n (θ)
1

n

n∑
i=1

ĝi,n(θ)

∥∥∥∥∥
2

−

∥∥∥∥∥Ω1/2(θ)
1

n

n∑
i=1

ĝi,n(θ)

∥∥∥∥∥
2
∣∣∣∣∣∣

+ sup
θ∈Θ

∣∣∣∣∣∣
∥∥∥∥∥Ω1/2(θ)

1

n

n∑
i=1

ĝi,n(θ)

∥∥∥∥∥
2

−

∥∥∥∥∥Ω1/2(θ)
1

n

n∑
i=1

E gi,n(θ)

∥∥∥∥∥
2
∣∣∣∣∣∣

6 sup
θ∈Θ

∥∥∥∥∥(Ωn(θ)− Ω(θ))1/2 1

n

n∑
i=1

ĝi,n(θ)

∥∥∥∥∥
2

+

sup
θ∈Θ

∣∣∣∣∣
[

1

n

n∑
i=1

[ĝi,n(θ) + E gi,n(θ)]

]′
Ω(θ)

[
1

n

n∑
i=1

[ĝi,n(θ)− E gi,n(θ)]

]∣∣∣∣∣
6op(1) + sup

θ∈Θ

∥∥∥∥∥Ω1/2(θ)
1

n

n∑
i=1

[ĝi,n(θ) + E gi,n(θ)]

∥∥∥∥∥ ·
∥∥∥∥∥Ω1/2(θ)

1

n

n∑
i=1

[ĝi,n(θ)− E gi,n(θ)]

∥∥∥∥∥ ,

(D.5)

where the last inequality is based on Assumptions 8 and 9(1) and the Cauchy-Schwartz inequality.

Because supi,k,n,θ ||ĝik,n(θ)||L2 <∞, it suffices to show supθ∈Θ | 1n
∑n
i=1[ĝik,n(θ)− E gik,n(θ)]| p−→ 0.

By the WLLN for NED (Jenish and Prucha, 2012), 1
n

∑n
i=1(yi,n − E yi,n)qik,n = op(1). Since

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

[ĝik,n(θ)− E gik,n(θ)]

∣∣∣∣∣
= sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

[
1

R

R∑
r=1

yi,n(ε(r)n , Xn, θ)− yi,n

]
qik,n − [E yi,n(εn, Xn, θ)− E yi,n]qik,n

∣∣∣∣∣
= sup
θ∈Θ

∣∣∣∣∣ 1

R

R∑
r=1

1

n

n∑
i=1

[
yi,n(ε(r)n , Xn, θ)− E yi,n(εn, Xn, θ)

]
qik,n

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

(yi,n − E yi,n)qik,n

∣∣∣∣∣
6

1

R

R∑
r=1

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

[
yi,n(ε(r)n , Xn, θ)− E yi,n(εn, Xn, θ)

]
qik,n

∣∣∣∣∣+ op(1),

it is sufficient to show supθ∈Θ

∣∣ 1
n

∑n
i=1[yi,n(εn, Xn, θ)− E yi,n(εn, Xn, θ)]qik,n

∣∣ = op(1), because

E yi,n(ε
(r)
n , Xn, θ) = E yi,n(εn, Xn, θ). We apply the bracketing method in empirical process in

three steps to show this. Empirical process method is needed because yi,n(εn, Xn, θ) is neither

smooth nor even continuous in θ. Let yi,n(εn, Xnβ, λ) ≡ yi,n(εn, Xn, θ) based on the explicit index

form Xnβ of the regressors in the model.
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First, we construct the brackets. Notice that for any δ > 0 and θ1 = (λ1, β
′
1)′ ∈ Θ with

B(θ1, δ) ≡ {θ ∈ RK+1 : ||θ − θ1||∞ 6 δ} ⊆ Θ, if θ̄ ∈ B(θ1, δ), then |xi,nβ̄ − xi,nβ1| 6 K||xi,n||δ.

Denote ||Xn|| ≡ (||x1,n||, · · · , ||xn,n||)′. Because Yn(εn, Xnβ, λ) is non-decreasing in λ and Xnβ,

Yn(εn, Xnβ1 − K||Xn||δ, λ1 − δ) 6 Yn(εn, Xnβ̄, λ̄) 6 Yn(εn, Xnβ1 + K||Xn||δ, λ1 + δ). Because

a 6 b 6 c implies that min(ad, cd) 6 bd 6 max(ad, cd) for any d ∈ R,

yq
ik,n

(θ1) ≡ min[yi,n(εn, Xnβ1 −K||Xn||δ, λ1 − δ)qik,n, yi,n(εn, Xnβ1 +K||Xn||δ, λ1 + δ)qik,n]

6yi,n(εn, Xnβ̄, λ̄)qik,n

6max[yi,n(εn, Xnβ1 −K||Xn||δ, λ1 − δ)qik,n, yi,n(εn, Xnβ1 +K||Xn||δ, λ1 + δ)qik,n] ≡ yqik,n(θ1).

Because Θ is a cuboid and B(θ1, δ) is a cube in RK+1, we can find N(δ) <∞ cubes {B(θj , δ)}N(δ)
j=1

such that ∪N(δ)
j=1 B(θj , δ) = Θ. We want to emphasize that N(δ) and {θj}N(δ)

j=1 depend only on δ and

Θ, but not on n. Thus, {[yq
ik,n

(θj), yqik,n(θj)]}N(δ)
j=1 is a bracketing set for {yi,n(εn, Xnβ, λ)qik,n :

(λ, β′)′ ∈ Θ}.

Second, we show that it is an L2(ε)-bracket by choosing a suitable δ. Notice that

||yqik,n(θj)− yqik,n(θj)||L2

=||[yi,n(εn, Xnβj +K||Xn||δ, λj + δ)− yi,n(εn, Xnβj −K||Xn||δ, λj − δ)]qik,n||L2

6BQ||yi,n(εn, Xnβj +K||Xn||δ, λj + δ)− yi,n(εn, Xnβj −K||Xn||δ, λj − δ)||Lp0

=BQ E1/p0 [yi,n(εn, Xnβj +K||Xn||δ, λj + δ)− yi,n(εn, Xnβj −K||Xn||δ, λj − δ)],

(D.6)

where a power of p0 is the same as power one because yi,n’s take values 0 or 1. By similar argument
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as that for Eq. (C.4), we have∣∣∣∣∂ E yi,n(εn, Xnβj +K||Xn||δ, λj)
∂δ

∣∣∣∣ =

∣∣∣∣E ∂ E[yi,n(εn, Xnβj +K||Xn||δ, λj)|Xn]

∂δ

∣∣∣∣
=

∣∣∣∣∣E
n∑
k=1

∂ E[yi,n(εn, Xnβj +K||Xn||δ, λj)|Xn]

∂(xk,nβ)
K||xk,n||

∣∣∣∣∣
=

∣∣∣∣∣∣
 ∑
k:dik6md̄0

+

∞∑
m=m0

∑
k:md̄0<dik6(m+1)d̄0

E
∂ E[yi,n(εn, Xnβj +K||Xn||δ, λj)|Xn]

∂(xk,nβ)
K||xk,n||

∣∣∣∣∣∣
6K2BXBf (Bp + 2)Cdd̄0

[
md +

∞∑
m=m0+1

md−1 · (l̄pδ̄)m
]

= K2BXBfCdd̄0m0 l̄pδ̄ <∞.

(D.7)

By Eq. (D.7) and Lemma C.2, we have

E[yi,n(εn, Xnβj+K||Xn||δ, λj+δ)−yi,n(εn, Xnβj−K||Xn||δ, λj−δ)] 6 2δ(K2BX+BW )BfCdd̄0m0 l̄pδ̄.

Thus, when δ 6 (ε/BQ)p0/[2(K2BX +BW )BfCdd̄0m0 l̄pδ̄], we have ||yqik,n(θj)− yqik,n(θj)||L2 6 ε.

Finally, the uniform convergence supθ∈Θ

∣∣ 1
n

∑n
i=1[yik,n(εn, Xn, θ)− E yik,n(εn, Xn, θ)]qik,n

∣∣ =

op(1) holds by the following argument as that for Theorem 2.4.1 in van der Vaart and Wellner

(1996). By Corollary 2 and Lemma D.2, both {yq
ik,n

(θj)}ni=1 and {yqik,n(θj)}ni=1 are geometri-

cally L2-NED uniformly in i, j and n. For each θ ∈ Θ, there exists a 1 6 j 6 N(δ) such that

||θ − θj ||∞ < δ. Then

1

n

n∑
i=1

[yi,n(εn, Xnβ, λ)− E yi,n(εn, Xnβ, λ)]qik,n 6
1

n

n∑
i=1

[yqik,n(θj)− E yi,n(εn, Xnβ, λ)qik,n]

=
1

n

n∑
i=1

[yqik,n(θj)− E yqik,n(θj)] +
1

n

n∑
i=1

E{[yi,n(εn, Xnβj +KBXδιn, λj + δ)− yi,n(εn, Xnβ, λ)]qik,n}

6 max
16j′6N(δ)

1

n

n∑
i=1

[yqik,n(θj′)− E yqik,n(θj′)] + ε.

Notice that the first term on the RHS of the above equation does not depend on θ and equals op(1)

by the WLLN for NED. Thus, supθ∈Θ
1
n

∑n
i=1[yik,n(εn, Xn, θ)−E yik,n(εn, Xn, θ)]qik,n 6 op(1) + ε.

Similarly, infθ∈Θ
1
n

∑n
i=1[yik,n(εn, Xn, θ) − E yik,n(εn, Xn, θ)]qik,n > op(1) − ε. Because ε > 0 is

arbitrary, the uniform convergence in probability holds.
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It remains to show that {Q̄n(θ)}∞n=K+1 is equicontinuous. It suffices to show 1
n

∑n
i=1 E gik,n(θ) =

1
n

∑n
i=1 E{[yi,n(εn, Xnβ, λ)−yi,n(εn, Xnβ0, λ0)]qik,n} is equicontinuous, which is implied by Lemma

C.2. �

Proof of Proposition 3: gi,n(θ) = [Pr(yi,n = 1|Xn, θ) − yi,n]q′i,n. To apply Theorem A.1,

we need to calculate the bracketing number. The required brackets have been constructed in the

proof of Theorem 1 and we have shown that when δ 6 (ε/BQ)p0/[2(K2BX + BW )BfCdd̄0m0n0δ̄],

||yqik,n(θj)− yqik,n(θj)||L2 6 ε. To cover the parameter space [0, Bλ]×
∏K
k=1[−Bβk , Bβk ], we need⌈

Bλ
δ

⌉
×
∏K
k=1

⌈
2Bβk
δ

⌉
= O(ε−p0(1+K)) cubes in R1+K . With w0 > w > 2p0(K + 1)r−1

0 , we have

p0(K+1)
wr0

+ 1
2 < 1. As a result, for some constant C > 0,

ˆ 1

0

N(x1/r0)1/wx−1/2dx 6 C
ˆ 1

0

x−[p0(K+1)/wr0+1/2]dx <∞.

Then the condition
´ 1

0
N(x1/r0)1/wx−1/2dx < ∞ in Theorem A.1 holds. Consequently, Theorem

A.1 is applicable and this proposition holds. �

Proof of Corollary 3: Denote y
(r)
i,n(θ) ≡ yi,n(ε

(r)
n , Xβ, λ).

lim sup
n→∞

∥∥∥∥∥ sup
||θ1−θ2||∞<η

∣∣∣∣∣n−1/2
n∑
i=1

[ĝik,n(θ1)− ĝik,n(θ2)]

∣∣∣∣∣
∥∥∥∥∥
Lq

6 lim sup
n→∞

∥∥∥∥∥ sup
||θ1−θ2||∞<η

∣∣∣∣∣n−1/2
n∑
i=1

1

R

R∑
r=1

[y
(r)
i,n(θ1)− y(r)

i,n(θ2)]qik,n

∣∣∣∣∣
∥∥∥∥∥
Lq

6 lim sup
n→∞

∥∥∥∥∥ sup
||θ1−θ2||∞<η

1

R

R∑
r=1

∣∣∣∣∣n−1/2
n∑
i=1

[y
(r)
i,n(θ1)− y(r)

i,n(θ2)]qik,n

∣∣∣∣∣
∥∥∥∥∥
Lq

6 lim sup
n→∞

1

R

R∑
r=1

∥∥∥∥∥ sup
||θ1−θ2||∞<η

∣∣∣∣∣n−1/2
n∑
i=1

[y
(r)
i,n(θ1)− y(r)

i,n(θ2)]qik,n

∣∣∣∣∣
∥∥∥∥∥
Lq

6 lim sup
n→∞

∥∥∥∥∥ sup
||θ1−θ2||∞<η

∣∣∣∣∣n−1/2
n∑
i=1

[gik,n(θ1)− gik,n(θ2)]

∣∣∣∣∣
∥∥∥∥∥
Lq

6 ε,

where the last inequality is from Proposition 3. �

Proof of Theorem 2: Let Gn(θ) ≡ 1
n

∑n
i=1 gi,n(θ) and Ḡn(θ) ≡ 1

n

∑n
i=1 E gi,n(θ). When

λ0 > 0, we apply Theorem B.1 and Lemma B.1 to prove the conclusion.

Apparently, Corollary 3 is sufficient for condition (iii) in Theorem B.1 and Lemma C.3 implies

condition (vi) there. It remains to check condition (iv) in Theorem B.1, whether the CLT holds.
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Consider m > m0. Denote ∆y
(r,m)
i,n = yi,n(ε

(r)
n , Xn, θ)− E[yi,n(ε

(r)
n , Xn, θ)|xj,n, ε(r)j,n, dij 6 md̄0] and

∆y
(m)
i,n = yi,n−E(yi,n|xj,n, εj,n, dij 6 md̄0). By Theorem 10.12 in Davidson (1994) and Minkowski’s

inequality

||ĝik,n(θ)− E[ĝik,n(θ)|xj,n, εj,n, ε(r)j,n, r = 1, · · · , R, dij 6 md̄0]||L2

6|| 1
R

R∑
r=1

∆y
(r,m)
i,n qik,n −∆y

(m)
i,n qik,n||L2 6

1

R

R∑
r=1

||∆y(r,m)
i,n qik,n||L2 + ||∆y(m)

i,n qik,n||L2 6 2BQ(l̄pδ̄)
m/2.

So, {ĝik,n(θ)}ni=1 is uniformly and geometrically L2-NED on {xi,n, εi,n, ε(r)i,n, r = 1, · · · , R}ni=1. Next,

we calculate its variance. Denote ν(gn(θ0)) = 1√
n

∑n
i=1[yi,n − E(yi,n|Xn, θ0)]qi,n and ν(g

(r)
n (θ0)) =

1√
n

∑n
i=1[yi,n(ε

(r)
n , Xn, θ0)− E(yi,n|Xn, θ0)]qi,n. Notice that ν(g

(r)
n (θ0)) and ν(gn(θ0)) are indepen-

dent conditional on Xn, and E[ν(gn(θ0))|Xn] = E[ν(g
(r)
n (θ0))|Xn] = 0. By var(Y ) = E var(Y |X) +

var E(Y |X),

var
1√
n

n∑
i=1

ĝik,n(θ) = var

[
1

R

R∑
r=1

ν(g(r)
n (θ0))− ν(gn(θ0))

]

= E

{
var

[
1

R

R∑
r=1

ν(g(r)
n (θ0))− ν(gn(θ0))

∣∣∣∣∣Xn

]}

= E

{
1

R2

R∑
r=1

var
[
ν(g(r)

n (θ0))
∣∣∣Xn

]
+ var [ν(gn(θ0))|Xn]

}

=(1 +
1

R
) E {var [ν(gn(θ0))|Xn]} = (1 +

1

R
) var ν(gn(θ0))→ (1 +

1

R
)V.

Hence, the CLT of NED in Jenish and Prucha (2012) is applicable under Assumptions 1, 4, 12 and

14, and we have 1√
n

∑n
i=1 ĝi,n(θ0)

d−→ N(0, (1 + 1
R )V ). Then this theorem holds by Theorem B.1

and Lemma B.1.

When λ0 = 0, the conclusion is by Theorem B.2 and Lemma B.1. �

Proof of Proposition 4: (1) Similarly to the proof of Theorem 1, it is sufficient to show

supθ∈Θ |Q
(b)
n (θ) − Q̄n(θ)| p−→ 0. By the same argument as in Eq. (D.5), we only need to show
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supθ∈Θ | 1n
∑n
i=1[ĝ

(b)
ik,n(θ)− E gik,n(θ)]| p−→ 0.

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

[ĝ
(b)
ik,n(θ)− E gik,n(θ)]

∣∣∣∣∣ 6
∣∣∣∣∣ 1n

n∑
i=1

[yn(ε(b)n , Xn, θ0)− yn(ε(b)n , Xn, θ̂n)]qik,n

∣∣∣∣∣+
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

{
[P̂r(yi,n = 1|Xn, θ)− yn(ε(b)n , Xn, θ0)]qik,n − E gik,n(θ)

}∣∣∣∣∣ .
Because the first term on the RHS is op(1) by Proposition 3 and θ̂n = θ0 + op(1), and the second

term on the RHS is op(1) from the proof of Theorem 1, the uniform convergence holds.

(2) It suffices to check conditions (iii) and (iv) of Theorem B.1 when λ0 ∈ (0, Bλ). A sufficient

condition for condition (iii) is the SEC of 1√
n

∑n
i=1 ĝ

(b)
ik,n(θ). Notice that the term yn(ε

(b)
n , Xn, θ̂n)

in ĝ
(b)
ik,n(θ) does not depend on θ, then the SEC of 1√

n

∑n
i=1 ĝ

(b)
ik,n(θ) can be established by the same

argument as in Proposition 3 and Corollary 3. Next, we verify condition (iv).

1√
n

n∑
i=1

ĝ
(b)
ik,n(θ0) =

1√
n

n∑
i=1

[P̂r(yi,n = 1|Xn, θ)− yn(ε(b)n , Xn, θ0)]q′i,n+

1√
n

n∑
i=1

[yn(ε(b)n , Xn, θ0)− yn(ε(b)n , Xn, θ̂n)]q′i,n.

Because the second term on the RHS is op(1) by the SEC of 1√
n

∑n
i=1 yn(ε

(b)
n , Xn, θ)q

′
i,n, and the

first term
d−→ N(0, (1 + 1

R )V ) from the proof of Theorem 2, condition (iv) holds.

Because conditions (iii) and (iv) of Theorem B.2 are the same as those of Theorem B.1, the

conclusion also holds when λ0 = 0. �
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