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This paper examines a Tobit model with spatial autoregressive interactions. We consider the maximum
likelihood estimation for this model and analyze asymptotic properties of the estimator based on the
spatial near-epoch dependence of the dependent variable process generated from the model structure.
We show that the maximum likelihood estimator is consistent and asymptotically normally distributed.
Monte Carlo experiments are performed to verify finite sample properties of the estimator.
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1. Introduction

The spatial autoregressive (SAR)model, Yn = λWnYn+Xnβ+ϵn,
has been extensively studied in spatial econometrics. Most of the
early studies are summarized in Anselin (1988) and LeSage and
Pace (2009). The two-stage least squares estimation is explored in
Kelejian and Prucha (1998, 1999), while the generalizedmethod of
moments is studied in Lee (2007). The large sample properties of
quasi-maximum likelihood estimation is considered in Lee (2004).

In recent years, there has been growing interest in nonlinear
SAR models, as linear models cannot fully capture the charac-
teristics of some types of data, such as censored or binary data.
Jenish (2012) studies the nonparametric estimation of spatial near-
epoch dependent (NED) random fields. An SAR model with a non-
linear transformation of the dependent variable is considered in Xu
and Lee (2015). The smoothed maximum score estimation of bi-
nary choice panel models with spatial autoregressive errors can
be found in Lei (2013). Qu and Lee (2015) investigate the estima-
tion of an SAR model with an endogenous spatial weights matrix.
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To study nonlinear SAR models and extend asymptotic properties
of extreme estimators of nonlinear models with serial correlation
(e.g. Gallant and White, 1988) to spatial correlation, some laws of
large numbers (LLN) and central limit theorems (CLT) are needed.
Jenish and Prucha (2009, 2012) have made fundamental contribu-
tions in this area by establishing LLN and CLT for spatialmixing and
NED random fields.

In the microeconometric literature, the Tobit model has been
widely studied since Tobin (1958) and Amemiya (1973). Some
asymptotic properties of the maximum likelihood estimator
(MLE) of the Tobit model are summarized in Amemiya (1985).
Recently, an increasing number of studies have introduced spatial
correlation into Tobit models. Some studies (e.g. Flores-Lagunes
and Schnier, 2012) consider estimation or suggest tests of the
spatial error Tobitmodel, but herewe only review the literature on
spatial autoregressive Tobit (SAR Tobit) models. In the literature,
there are two types of SAR Tobit models (Qu and Lee, 2012): the
simultaneous SAR Tobit model (yi,n = max(0, λ0

n
j=1wij,nyj,n +

xi,nβ0 + ϵi,n)), and the latent SAR Tobit model (yi,n = max(0, y∗

i,n),
where y∗

i,n = λ0
n

j=1wij,ny∗

j,n + xi,nβ0 + ϵi,n). The different
interpretations for these two models are given in Qu and Lee
(2012). So far, most studies have focused on the second type.
LeSage (2000) and LeSage and Pace (2009) consider the Bayesian
estimation of the latent SAR Tobitmodel.Marsh andMittelhammer
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(2004) study the performance of the generalized maximum
entropy estimation of the SAR and the latent SAR Tobit models
with Monte Carlo simulations. Testing of the existence of spatial
correlation in the latent SAR Tobit model is carried out in Amaral
and Anselin (2011) and Qu and Lee (2012). Donfouet et al. (2012)
apply the latent SAR Tobit model to examine community-based
health insurance using Bayesian estimation.

Compared to the latent SAR Tobit model, there are even fewer
studies on the simultaneous SAR Tobit model. Autant-Bernard and
LeSage (2011) consider the Bayesian estimation of this model and
apply it to study knowledge spillovers. Qu and Lee (2012, 2013)
examine the existence of spatial correlation in the simultaneous
SAR Tobit model. To the best of our knowledge, there have been no
formal studies on asymptotic properties of estimators of the simul-
taneous SAR Tobit model (we will call it SAR Tobit model for short,
since we do not study the latent one). In this paper, we first show
theNEDproperties of important variables generated by thismodel.
Next, we establish the consistency and asymptotic normality of the
MLE via the LLN and CLT developed in Jenish and Prucha (2012).

The structure of this paper is as follows: In Section 2, we in-
troduce the SAR Tobit model and discuss its model coherency. In
Section 3, we derive NED properties of the dependent variable and
someother relevant functions of randomvariables. In Section 4, the
identification of the SAR Tobitmodel and the consistency of itsMLE
are discussed. In Section 5, we establish the asymptotic normality
of the estimator. In Section 6,we study finite sample properties and
the robustness of the estimator usingMonte Carlo experiments. All
of the proofs for propositions and theorems are presented in the
Appendices.

2. The spatial autoregressive Tobit model

The SAR Tobit model is motivated by two branches of litera-
ture in economics. One branch is concerned with peer effects from
an exogenous social network. In such studies, each player chooses
his/her effort, which is usually assumed to be nonnegative, and
the Nash Equilibrium is exactly our model. See the detailed discus-
sion below Eq. (2). The other branch is concerned with economet-
rics studies where a significant fraction of nonnegative data can
be zero. Our model captures both features with a perfect informa-
tion game framework in which an individual maximizes utility by
choosing effort subject to a nonnegative constraint. A few empiri-
cal studies in the existing literature might appropriately be imple-
mented by our model: (1) Rupasingha et al. (2004) investigate the
environmental Kuznets curve for US counties. In the data set, facil-
ities do not need to report to relevant environmental agents when
they manufacture or process less than 25,000 pounds of a listed
chemical during a year. Some counties do not have firms that indi-
viduallymeet these criteria. Thus, the pollutant data of these coun-
ties are censored. (2) Direct agriculture disaster payment relief for
different states inUS is studied inMarsh andMittelhammer (2004),
where some states do not receive any such payment (in certain
years) and some spatial correlation exists. (3) LeSage (2009) exam-
ines origin–destination (OD) commuting flows from 60 districts in
Toulouse, France. About 15% of the 3600 OD flows have zero val-
ues. (4) As is pointed out in Donfouet et al. (2012), community-
based health insurance (CBHI) has increasing demand in rural
areas in developing countries and households are more likely to
pay for CBHI if other households in the same village are willing to
do so. However, some households do not pay for the CBHI. (5) Spa-
tial correlation among school district income tax rates in various
school districts in Iowa is examined in Qu and Lee (2012, 2013).1

1 We complete their studies with the asymptotic normality and variance of the
MLE, presented in a supplementary online file (see Appendix C).
Let {(yi,n, xi,n)}ni=1, where yi,n is censored such that yi,n > 0 and
xi,n ∈ RK , be the sample we observe. We denote the position of in-
dividual (spatial unit) i as si ∈ Rd, a point in the d-dimensional Eu-
clidean space. For simplicity of notation, we also use i to represent
si. As there are interactions among different individuals, we use an
n×nmatrixWn = (wij,n) to represent their relative strength of di-
rect interactions. If there is a potential direct interaction between
individuals i and j, thenwij,n ≠ 0, orwji,n ≠ 0 or both; zero, other-
wise. As usual, a proper normalization haswii,n = 0 for all i.

F(x) ≡ max(0, x) is both a non-decreasing convex function and
a Lipschitz function such that |F(x1)− F(x2)| 6 |x1 − x2|. The SAR
Tobit model in this paper is specified as
yi,n = F(λ0wi·,nYn + xi,nβ0 + ϵi,n), (1)
where wi·,n is the ith row of Wn. With generalized notations
max(0, (x1, . . . , xn)′) = F((x1, . . . , xn)′) ≡ (max(0, x1), . . . ,
max(0, xn))′, the model can be written as

Yn = max(0, Y ∗

n ) = F(λ0WnYn + Xnβ0 + ϵn), (2)
where Y ∗

n ≡ λ0WnYn + Xnβ0 + ϵn. The model can be derived
as a complete information game with each spatial unit (an
agent) maximizing its linear–quadratic utility function subject to
nonnegative constraints, given the actions of its links (see Ballester
et al., 2006; Calvó-Armengol et al., 2009). Assume individual i’s
utility is u(y1,n, . . . , yn,n) = −y2i,n +2(λ0wi·,nYn + xi,nβ0 + ϵi,n)yi,n.
When λ0wi·,nYn + xi,nβ0 + ϵi,n > 0, u is maximized at yi,n =

λ0wi·,nYn + xi,nβ0 + ϵi,n. When λ0wi·,nYn + xi,nβ0 + ϵi,n 6 0,
∂u/∂yi,n = −2yi,n +2(λ0wi·,nYn +xi,nβ0 +ϵi,n) < 0when yi,n > 0,
i.e., u is strictly decreasing when yi,n > 0. Thus, u is maximized at
yi,n = 0. Hence, the Nash equilibrium is Eq. (2).

After a slight modification, this model can deal with the case
where censoring points ci,n’s are known and nonzero. With ci,n be-
ing the censoring points for i, an extended model can be Ỹn =

max{Cn, Ỹ ∗
n } where Ỹ ∗

n = λ0WnỸn + Xnβ0 + ϵn. We can do a
transformation, Yn = Ỹn − Cn, then the extended model can be
rewritten as Eq. (1) with a trivial modification on the regressors,
Y ∗
n = λ0Yn + λ0WnCn − Cn + Xnβ0 + ϵn. But this paper cannot deal

with the case studied in Nelson (1977) where ci,n’s are unknown.
An example of such a model is the female labor supply where yi,n
is a market wage and ci,n is a reservation wage. The reservation
wage can be modeled as another regression equation based on an
individual’s unobserved utility. We can observe market wage yi,n
when yi,n > ci,n, but we will not observe yi,n while yi,n 6 ci,n be-
cause those females will not work. Such a model is in the category
of sample selection models. The censored model in this paper can-
not handle sample selection models.

Because our model (2) is a system of nonlinear equations with
censored dependent variables, it is necessary to discuss conditions
for model coherency (Amemiya, 1974). Before doing so, we list our
assumptions.

Assumption 1. Individual units in the economy are located or
living in a regionDn ⊂ D ⊂ Rd, where the cardinality ofDn satisfies
limn→∞ |Dn| = ∞. The distance d(i, j) between any two different
individuals i and j is larger than or equal to a specific positive
constant, without loss of generality, say, 1.

Note that the space D can be a space of economic characteris-
tics, a geographical space or a mixture of both economic and phys-
ical spaces. Correspondingly, the distance may refer to economic
and/or physical distance induced from any norm on Rd. Assump-
tion 1 uses the increasing domains asymptotic and rules out the
scenario of infilled asymptotic.2 This setting is introduced in Jen-
ish and Prucha (2009, 2012) for spatial mixing and NED processes.

2 Under infilled asymptotic, even some popular estimators, such as the least
squares and the method of moments may not be consistent, as noted in Lahiri
(1996).



266 X. Xu, L.-f. Lee / Journal of Econometrics 188 (2015) 264–280
Assumption 2. ζ ≡ λm supn ∥Wn∥∞ < 1, and Λ = [−λm, λm] is
the compact parameter space of λ on the real line.

As the true parameter λ0 must be in the parameter space,
λ0 supn ∥Wn∥∞ < 1. A similar assumption for λ0 can be found
in the linear SAR model (e.g. Kelejian and Prucha, 1998). As-
sumption 2 is related to stability in the linear SAR model and
the model coherency for the Tobit model. Amemiya (1974) dis-
cusses the model coherency for the simultaneous equation Tobit
model using principal minor. From Theorem 3 in Amemiya (1974),
Eq. (2) has a unique solution if and only if every principal minor
of In − λ0Wn is positive, which is implied by Assumption 2.3 With
Assumption 2, we can also establish the existence and uniqueness
of the vector of dependent variables as a solution for the system
by a contraction mapping for any possible value λ in the param-
eter space, as in Qu and Lee (2013). When Assumption 2 fails, it
is possible that there are no or multiple solutions (see Examples 1
and 2 on p. 1006, Amemiya, 1974). It is also possible that there is
a unique solution, e.g., the solution is unique for the system, y1 =

max(0, λy2 + a) and y2 = max(0, b), no matter what the value
of λ is. Even infinite solutions are possible, e.g., all y1 = y2 > 0
are solutions of the system: y1 = max(0, y2), y2 = max(0, y1).
Thus Assumption 2 is a sufficient but not necessary condition for
the uniqueness of the solution.

In the past literature, an incoherent model was regarded as
an unsatisfactory probability model. In the recent econometric
research on game estimation on discrete choices, however, re-
searchers take an alternative view. Model incoherency reflects
the presence of multiple equilibria in the model, and suggests ei-
ther completing the model by specifying an equilibrium selection
rule (see, e.g., Bajari et al., 2010) or set-estimation methods (see,
e.g. Chernozhukov et al., 2007; Ciliberto and Tamer, 2009).

One might question whether Assumption 2 can be relaxed.
When supn ∥Wn∥∞ = 1, Assumption 2 is equivalent to λm < 1.
When |λ| > 1, there are still at least two problems, in addition
to the model coherency mentioned above. First, we need |λ| < 1
such that the Neumann series expansion (In − λWn)

−1
= In +

λWn +λ2W 2
n + .. converges. Second, for at least one type of matrix,

the so-called one forward and one behind weights matrix in Koch
(2012), when it is normalized, the inverses of its characteristic val-
ues are dense in (−∞,−1] ∪ [1,∞) as n → ∞. Since ln |In−λWn|

appears in the log-likelihood function, we will have −∞ when λ
takes a value in such a dense set. Thus, in general, without Assump-
tion 2, the uniform convergence will be difficult to establish.

Another difficulty is to relax the compact parameter space of λ
to (−1, 1) if supn ∥Wn∥∞ = 1. This is a technical problem. The
compactness of the parameter space is a requirement for most
consistency theorems for nonlinear estimators, such as Theorem
2.1 in Newey andMcFadden (1994) and Theorem3.3 in Gallant and
White (1988); also it is often required when we try to establish
the identifiable uniqueness, e.g., Lemma 4.1 in Pötscher and
Prucha (1997). Consistency conditions without the compactness
of parameter spaces are discussed in Section 2.6 in Newey and
McFadden (1994) and on p. 108 of Amemiya (1985). FromTheorem
2.7 in Newey and McFadden (1994), if the objective function is
concave, then we can still obtain the consistency. But the log-
likelihood function of ourmodel does not seem to be concave, even
after some parametric transformations.4

3 Under Assumption 2, by spectral radius theorem, for any h × h principal
submatrix W ∗ of Wn , maxi |eigi(λW ∗)| 6 ∥λW ∗

∥∞ 6 ∥λWn∥∞ 6 ζ , where
eigi(λW ∗) is the ith characteristic root of λW ∗ . Thus, when eigi(λW ∗) is real,
λi ≡ eigi(Ih − λW ∗) > 1 − ζ ; otherwise, its conjugate λi is also a characteristic
value of Ih − λW ∗ , thus λiλi > (1 − ζ )2 . Thus, the corresponding principal minor
|Ih − λW ∗

| > (1 − ζ )h > 0.
4 Newey and McFadden (1994) point out that it is possible to relax compactness

with some nonconcave objective functions for regression models, such as a result
Finally, Assumption 2 is also closely related to the situation
where the correlation between variables is weak when their dis-
tance is large. This is muchmore apparent for the linear SARmodel
with a continuous dependent variable, Yn = λWnYn + Xnβ + ϵn,
which can be regarded as a special case of the Tobit model if the
censoring becomes negligible. By iteration, Yn = Xnβ+λWnXnβ+

(λWn)
2Xnβ + · · · + (λWn)

mXnβ + · · · + ϵn + λWnϵn + · · · . When
∥λWn∥∞ > 1, more distant neighbors might have stronger im-
pacts on a spatial unit than nearer ones. This is apparently not an
interesting case, but the reason is not due to multiple Nash equi-
libria.

In addition to Assumption 2, we need some structures for Wn
in order to establish that the dependent variable of the SAR Tobit
model is an NED process. In many applications, elements inWn are
nonnegative, but in theory we can allow elements of Wn to take
on both negative and positive values.5 In addition, we assume that
there are no measurement errors in Wn, as is usually done in spa-
tial econometrics. In practice, researchers might use their knowl-
edge to specify the elements of the weights matrix. If there are
several possible specified weights matrices, one has a model se-
lection problem and hemay use somemodel selection procedures.
Recently, there have been some attempts that treat a specified
weights matrix as endogenous, and suggest estimationmethods to
handle the possible endogeneity issue.When the SARmodel is used
to study social interactions or networks, there are someattempts to
study the network formation issue. However, there are distinctions
between spatial networks and social networks. Social networks
such as friendship networksmight be randomly observed, but spa-
tial networks are specified based on geographical or economic
characteristics of spatial units instead of being randomly observed.

Assumption 3. In addition to wii,n = 0 for all i, the weights wij,n
in Wn satisfy at least one of the following two conditions:

(1) Only individuals whose distances are less than or equal to
some specific constantmay affect each other directly.Without loss
of generality, we set it as d̄0 > 1. That is to say, wij,n can be non-
zero only if d(i, j) 6 d̄0.

(2) (i) For every n, the number of columns, w·j,n, of Wn with
|λ0|

n
i=1 |wij,n| > ζ , is less than or equal to some fixed nonneg-

ative integer that does not depend on n, denoted as N; (ii) there
exists an α > d and a constant C0 such that |wij,n| 6 C0/d(i, j)α .6

In Assumption 3, we discuss two different settings of the
weights matrix. Assumption 3(1) allows two individuals to have
direct interaction only when they are located within a specific dis-
tance. In spatial econometrics and statistics, one may set wij,n ≠

0 only if locations i and j are contiguous. This satisfies Assump-
tion 3(1).

Assumption 3(2) allows the existence of direct interaction even
though two locations are far away fromeach other, but requires the
strength of their interaction in terms ofwij,n to decline with d(i, j)
in the power α, where α > d. As the dimension of the Euclidean
space increases, more points are allowed within a sphere with a
specific radius. Thus, if the decaying rate ofwij,n does not increase,
when d is large enough, it is possible that the effects of individual
spatial units are not negligible even when their distances from i

in McDonald and Newey (1988), but their result is not applicable in our setup.
Assumption D on p. 108 of Amemiya (1985) is another condition, but it is hard to
verify in our model.
5 Thanks to one referee for pointing this out.
6 Here, we use ζ , which is related to ∥Wn∥∞ , but we do not mean that the

column sum and the row sum have some relationship. What we want to express
is that, except for (at most) a fixed number of columns, the other columns satisfy
λmbf supj


i wij,n 6 ζ ′ < 1. Since max(ζ , ζ ′) < 1, for simplicity of notations, we

just mix up ζ and ζ ′ , which will not result in any conflict in the proof.
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are large. This is because there could be many units located in a
sphere of a larger dimensional space. In this case, the NED property
might not be guaranteed.7 Assumption 3(2)(ii) includes the setting
of Assumption 3(1) and the case that |wij,n| with an upper bound
decreasing exponentially as d(i, j) increases, i.e. |wij,n| 6 Cηd(i,j)
for some constants C > 0 and 0 < η < 1. However,
Assumption 3(2)(ii) is insufficient for our purpose. An additional
condition, Assumption 3(2)(i), is needed for the column sums of
Wn, which is not imposed in Assumption 3(1). Assumption 3(2)(i)
states that the cardinal number |{j : |λ0|

n
i=1 |wij,n| > ζ }| 6 N .

That is to say, the total effects of links on each spatial unit, with at
most N individuals excluded, can be bounded by ζ . This scenario
corresponds to the existence of a limited number of (larger) spatial
units which can have larger aggregated effects on other spatial
units, even as the total number of spatial units increases.8 Here
is an example that satisfies Assumption 3(1) but not 3(2). For
simplicity, let λ0 = 1, n be a multiple of 3 and Wn be a block

diagonal matrix with each diagonal block as


0 0 0
0.6 0 0
0.6 0 0


. Then the

number of columns satisfying λ0
n

i=1 |wij,n| > 1 > ζ is n/3,
unbounded as n → ∞. However, for a symmetricWn that satisfies
Assumption 2, Assumption 3(2)(i) holds with N = 0, because
|λ|


i |wij,n| = |λ|


i |wji,n| 6 ζ .
By Lemma A.1 in Jenish and Prucha (2009), with Assumption 1,

we have |{j : m 6 d(i, j) < m + 1}| < Cmd−1 for some constant
C > 0. With this lemma, our Assumptions 1–3(2) imply that
supn ∥λ0Wn∥1 < ∞ (see the proof of Lemma 1). Furthermore, the
column sum of |Wn|

l, where |Wn| ≡ (|wij,n|)n×n, multiplied by λl0
decays geometrically as l increases, as stated in Lemma 1.

Lemma 1. Under Assumptions 1–3(2), Γ ≡ |λ0| supn ∥Wn∥1 < ∞

and ∥λl0|Wn|
l
∥1 6 max(lN, 1)Γ ζ l−1, where |Wn| ≡ (|wij,n|)n×n.

This lemma has explored a feature for |Wn|
l so the result is es-

tablished for∥λl0|Wn|
l
∥1 as awhole9 and itwill be used in the estab-

lishment of NED properties of the dependent variable. In deriving
the NED, the Taylor expansion is applied to (In −|λ0| · |Wn|)

−1, and
thus |Wn|

l appears. This is why Lemma 1 is required.

3. Moment and NED properties of some variables

In order to study the asymptotic properties of the MLE (or
other estimation methods), some moment and NED properties are
needed. We first review the definition and some properties of NED
random fields in Jenish and Prucha (2012) for the convenience of
reference.

For any random variable v, ∥v∥p = [E|v|p]
1
p denotes its Lp-

norm. Let Z = {Zi,n, i ∈ Dn, n > 1} and υ = {υi,n, i ∈ Dn, n > 1}
be two random fields, where Dn satisfies Assumption 1. Suppose
that ∥Zi,n∥p < ∞, where p > 1. Fi,n(s) is denoted as the σ -
field generated by the random variables υj,n’s with units j’s located
within the ball Bi(s) with radius s and centered at i. Z is said to be
Lp-near-epoch dependent on υ if ∥Zi,n − E(Zi,n|Fi,n(s))∥p 6 di,nψ(s)
for some array of finite positive constants d = {di,n, i ∈ Dn, n > 1}
and for some sequence ψ(s) > 0 with lims→∞ ψ(s) = 0. The di,n’s
are called NED scaling factors. The ψ(s), called the NED coefficients,

7 In a network, this would refer to a dense network. With a dense network, MLE
of a network SAR model might not even exist (see Smith, 2009).
8 In a network setting, this rules out the existence of many stars in a network.

If there were too many stars, the induced correlations among nodes might be too
strong to allow the process to be NED. Strong stars may relate to the existence of
strong dependence, and spatial correlation usually generates weak dependence, as
noted in Chudik et al. (2011).
9 The inequality may not be valid for (λ0∥Wn∥1)

l .
can be non-increasing without loss of generality. The NED random
field is uniform iff supn supi∈Dn di,n < ∞, and it is called geometric
iff ψ(s) = O(ρs) for some 0 < ρ < 1. The NED property is
kept under summation, product (see Lemma A.2) and Lipschitz
transformations.

Now we are ready to discuss the NED properties of {yi,n}ni=1
and its transformations on the base


xi,n, ϵi,n

n
i=1. That is to say,

Fi,n(s) ≡ σ({xj,n, ϵj,n : d(i, j) 6 s}). And the conditions for xi,n
and ϵi,n are summarized in the following assumption:

Assumption 4. sup16k6K ,i,n E|xik,n|2 < ∞; supi,n E|ϵi,n|2 < ∞.

Notice that we do not impose normality on the disturbances
in Assumption 4 to highlight some general stochastic structures
implied solely by the model (1) without a distributional assump-
tion. In later analyses, we will often deal with {wi.,nYn}

n
i=1, {y

∗

i,n ≡

λ0wi·,nYn + xi,nβ0 + ϵi,n}
n
i=1 and {zi,n(θ) ≡ (yi,n − λwi·,nYn −

xi,nβ)/σ }
n
i=1. We summarize their moment and NED properties in

the following proposition. Recall that α in the following proposi-
tion is a parameter in Assumption 3(2)(ii): |wij,n| 6 C0/d(i, j)α .

Proposition 1. (1) Under Assumption 2, if sup16k6K ,i,n E|xik,n|p <
∞ and supi,n E|ϵi,n|p < ∞ for some p > 1, then {yi,n}ni=1, {wi.,nYn}

n
i=1,

{zi,n(θ)}ni=1 and {y∗

i,n}
n
i=1 are all uniformly Lp bounded.

(2)Under Assumptions 1–3(1) and 4, {yi,n}ni=1 is geometrically L2-
NED on


xi,n, ϵi,n

n
i=1: ∥yi,n − E[yi,n|Fi,n(s)]∥2 6 C(ζ 1/d̄0)s for some

C > 0 that does not depend on i and n. The same conclusion also holds
for {wi.,nYn}

n
i=1, {zi,n(θ)}

n
i=1 and {y∗

i,n}
n
i=1.

(3) Under Assumptions 1–3(2) and 4, {yi,n}ni=1 is L2-NED on
xi,n, ϵi,n

n
i=1: ∥yi,n − E[yi,n|Fi,n(s)]∥2 6 C/sα−d for some C > 0

that does not depend on i and n. The same conclusion also holds for
{wi.,nYn}

n
i=1, {zi,n(θ)}

n
i=1 and {y∗

i,n}
n
i=1.

As shown below, we not only deal with linear functions of the
dependent variables, but also with some of their nonlinear func-
tions. To analyze the uniform Lp boundedness of these nonlin-
ear functions, we can bound them and their derivatives by some
polynomial functions. With these polynomial bounds and Propo-
sition 1(1), we can establish the uniform Lp boundedness. With
Lemma A.1, which relates relevant polynomial functions to the
L2-NED property of those of basic dependent variables, we obtain
Lemma A.4. Lemma A.4, which is a generalization beyond Lipschitz
functions to awider range of functions, can preserve the NED prop-
erty of their arguments. Since the disturbances are normally dis-
tributed in the Tobit model, we will deal with the distribution and
density functions of the standard normal distribution quite often.
It is necessary to discuss the properties of some variables related
to the normal distribution. Let Φ(·) and φ(·), respectively, be the
distribution and density functions of the standard normal random
variable. The NED properties of relevant functions of themodel are
summarized in Lemma A.9.

Another nonlinear transformation of yi,n in the log-likelihood
function is the dichotomous indicator I(yi,n > 0). Notice that it
is neither a Lipschitz nor a continuous function of yi,n, but its NED
property can be established with a boundedness condition on the
densities of


y∗

i,n

n
i=1.

Proposition 2. (1) Under Assumptions 1–3(1) and 4, if the essential
supremums of densities of


y∗

i,n

n
i=1 are uniformly bounded in i and n,

then {I(yi,n > 0)}ni=1 is a uniformly and geometrically L2-NED random
field on


ϵi,n

with NED coefficient (ζ 1/3d̄0)s.

(2) Under Assumptions 1–3(2) and 4, if the essential supremums
of densities of


y∗

i,n

n
i=1 are uniformly bounded in i and n, then

I(yi,n > 0)
n
i=1 is uniformly L2-NED on


ϵi,n

: ∥I(yi,n > 0) −

E[I(yi,n > 0)|Fi,n(s)]∥2 6 C/s(α−d)/3 for some constant C > 0.
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Because the joint mixed probability density function of
{y1,n, . . . , yn,n} is derived from that of ϵn, a log determinant term
appears in the log-likelihood function. Taylor’s expansion is use-
ful because the log determinant of the Jacobian transformation can
be expressed in the form of summation. From there, we analyze
the NED property for each term in the summation. We summarize
some related results in Lemmas A.7 and A.8 and apply them to the
model. Let Wn = Gn(Yn)WnGn(Yn), where Gn(Yn) = diag(I(y1,n >
0), . . . , I(yn,n > 0)), and ri,n(λ) = ((In−λWn)

−1Wn)ii.With Propo-
sition 2 and η = ζ 1/3d0 , Lemmas A.7 and A.8 imply the following
results:

Proposition 3. (1) Under Assumptions 1–3(1) and 4, if the essential
supremums of densities of


y∗

i,n

n
i=1 are uniformly bounded in i and n,

then both {ri,n(λ0)}ni=1 and {([(In−λ0Wn)
−1Wn]

2)ii}
n
i=1 are uniformly

and geometrically L2-NED with coefficients s(ζ 1/3d̄0)s and s2(ζ 1/3d̄0)s

respectively.
(2) Under Assumptions 1–3(2) and 4, if the essential supremums

of densities of

y∗

i,n

n
i=1 are uniformly bounded in i and n, then

{ri,n(λ0)}ni=1 and {([(In − λ0Wn)
−1Wn]

2)ii}
n
i=1 are uniformly L2-NED

random fields with coefficient 1/s(α−d)/3.

From Theorem 1 in Jenish and Prucha (2012), for a uniform
L1-NED random field {Zi,n}ni=1 on some suitable α-mixing random
field with supi,n ∥Zi,n∥p < ∞ for some p > 1, 1

n

n
i=1(Zi,n −

EZi,n)
L1
−→ 0. Since a uniform L2-NED random field is also uniformly

L1-NED, the weak LLN also holds. The CLT for NED random fields
requires more conditions. Assume Z = {Zi,n}ni=1 is a zero-mean
uniform L2-NED random field on some suitable α-mixing random
field. If (1) Z is uniformly L2+δ integrable for some δ > 0, (2)
infn 1

nσ
2
n > 0, where σ 2

n = Var(
n

i=1 Zi,n) and (3) NED coefficients

satisfy


∞

r=1 r
d−1ψ(r) < ∞, then σ−1

n
n

i=1 Zi,n
d
−→ N(0, 1). Thus,

with the uniform Lp boundedness and uniform L2-NED properties
established in this section, we may use the LLN and CLT for
spatial NED processes to analyze the consistency and asymptotic
distribution of the MLE.

4. The MLE and consistency

As in Amemiya (1973), we will use ML to estimate the true pa-
rameters. The Tobit model is established under the distributional
specification that the error terms are normally distributed.

Assumption 5. For each n, ϵi,n’s are i.i.d. N(0, σ 2) random
variables; Xn and ϵn are independent.

Assumption 6. (i) {xi,n}ni=1 is an α-mixing random field with α-
mixing coefficient α(u, v, r) 6 (u+v)τ α̂(r) for some τ > 0, where
α̂(r) satisfies


∞

r=1 r
d−1α̂(r) < ∞. (ii) supi,k,n ∥xik,n∥4+∆ < ∞ for

some∆ > 0.

Assumption 7. The parameter space Θ of θ = (λ, β ′, σ )′ is a
compact subset of RK+2.

Qu and Lee (2013) show that the log-likelihood function of Yn is

ln Ln(θ) =

n
i=1

I(yi,n = 0) ln

1 − Φ


λ

σ
wi·,nYn + xi,n

β

σ


−

1
2
ln(2πσ 2)

n
i=1

I(yi,n > 0)

+ ln det(I2,n − λW22,n)−
1
2

n
i=1

I(yi,n > 0)
×


1
σ
yi,n −

λ

σ
wi·,nYn − xi,n

β

σ

2

=

n
i=1

I(yi,n = 0) lnΦ(zi,n(θ))

−
1
2
ln(2πσ 2)

n
i=1

I(yi,n > 0)

+ ln det(I2,n − λW22,n)−
1
2

n
i=1

I(yi,n > 0)z2i,n(θ), (3)

where W22,n is the principal submatrix of Wn corresponding to
the strictly positive yi,n’s, I2,n is the identity matrix with the same
dimension asW22,n, det(A) is the absolute value of the determinant
of the matrix A, and zi,n(θ) ≡ (yi,n − λwi·,nYn − xi,nβ)/σ is defined
in Section 3. Note that the dimension of I2,n and the positions of
elements of W22,n in Wn are stochastic, because the number of
positive elements in {yi,n}ni=1 and their positions for spatial units
are random. Maximizing the log-likelihood function, we obtain
the MLE θ̂ . Recall Wn = Gn(Yn)WnGn(Yn). Integrating both sides
of d ln det(I2,n − λW22,n)/dλ = −tr[(I2,n − λW22,n)

−1W22,n] =

−tr(


∞

l=0 λ
lW l+1

22,n), where the first equality is from a rule for
matrix differentiation (Amemiya, 1985, p. 461), we obtain

ln det(I2,n − λW22,n) = −

∞
l=1

(λl/l)tr(W l
22,n)

= −

∞
l=1

(λl/l)tr(Wn
l
) = ln det(In − λWn), (4)

where the second equality holds because trW l
22,n = trWn

l
.

Under Assumptions 5 and 6, by Proposition 1 and Lemma A.9,
{yi,n}ni=1, {y∗

i,n}
n
i=1, {zi,n(θ)}ni=1 and {

φ(zi,n(θ))
Φ(zi,n(θ))

}
n
i=1 are all uni-

formly L4+∆ bounded, while {zi,n(θ)2}ni=1, {lnΦ(zi,n(θ))}ni=1 and
{φ(zi,n(θ))zi,n(θ)/Φ(zi,n(θ))}ni=1 are uniformly L2+∆/2 bounded. In
the following lemma, we show that the additional boundedness
condition for {y∗

i,n}
n
i=1 in Proposition 2 is also satisfied. Conse-

quently, {I(yi,n > 0)}ni=1 is a uniform L2-NED random field.

Lemma 2. Under Assumptions 1–3 and 5, the essential supremums
of densities of


y∗

i,n

n
i=1 are uniformly bounded in i and n.

Identification is always important for an econometric model.
For MLE with a finite sample, identification is equivalent to
P(ln Ln(θ0) ≠ ln Ln(θ1)) > 0 for any θ1 ≠ θ0 (Rothenberg, 1971).
We summarize a sufficient identification result in the following
proposition.

Proposition 4. Under Assumptions 2 and 5, if X ′
nXn is invertible with

probability 1, Wn + W ′
n ≠ 0, and there exists j ≠ j′ such thatn

i=1w
2
ij,n ≠

n
i=1w

2
ij′,n, then θ0 = (λ0, β0, σ

2
0 ) is identified.

To show the consistency of the estimator,weneed to strengthen
the identification information inequality to the limit.

Assumption 8. lim supn→∞[E ln Ln(θ) − E ln Ln(θ0)] < 0 for any
θ ≠ θ0.

Now we can state our result about the consistency of MLE. The
proof is in the Appendices.

Theorem 1. Under Assumptions 1–8, the MLE of model (2) is
consistent.
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5. Asymptotic normality

To discuss the asymptotic normality of the MLE, we present the
first derivatives of the log-likelihood function, which are arranged
in summation form. Recall zi,n(θ) ≡ (yi,n − λwi·,nYn − xi,nβ)/σ .

∂ ln Ln(θ)
∂λ

= −

n
i=1

I(yi,n = 0)
φ(zi,n(θ))wi·,nYn

σΦ(zi,n(θ))
− tr[(I2,n − λW22,n)

−1W22,n]

+

n
i=1

I(yi,n > 0)σ−2

× (yi,n − λwi·,nYn − xi.nβ)wi·,nYn, (5)

∂ ln Ln(θ)
∂β

= −

n
i=1

I(yi,n = 0)
φ(zi,n(θ))x′

i,n

σΦ(zi,n(θ))

+

n
i=1

I(yi,n > 0)σ−1zi,n(θ)x′

i,n, (6)

∂ ln Ln(θ)
∂σ

=

n
i=1

I(yi,n = 0)σ−2 φ(zi,n(θ))(λwi·,nYn + xi.nβ)
Φ(zi,n(θ))

−
1
σ

n
i=1

I(yi,n > 0)

+

n
i=1

I(yi,n > 0)σ−3(yi,n − λwi·,nYn − xi.nβ)2. (7)

Because tr[(I2,n − λW22,n)
−1W22,n] = tr[(In − λWn)

−1Wn] =n
i=1 ri,n(λ), the score can be written in terms of a summation as

∂ ln Ln(θ)/∂θ =
n

i=1 qi,n(θ), where

qi,n(θ)

=


−I(yi,n = 0)

φ(zi,n(θ))wi·,nYn
σΦ(zi,n(θ))

+ I(yi,n > 0)
zi,n(θ)wi·,nYn

σ
− ri,n(λ)

−I(yi,n = 0)
φ(zi,n(θ))x′i,n
σΦ(zi,n(θ))

+ I(yi,n > 0)
zi,n(θ)x′i,n

σ

I(yi,n = 0)
φ(zi,n(θ))(λwi·,nYn + xi.nβ)

Φ(zi,n(θ))σ 2 −
1
σ

I(yi,n > 0)+ I(yi,n > 0)
zi,n(θ)2

σ

 .

(8)

To obtain the asymptotic normality of theMLE, some additional
conditions are needed.

Assumption 9. θ0 is in the interior ofΘ .

Assumption 10. (i) supi,k,n ∥xik,n∥8+δ < ∞ for some δ > 0. (ii)
For some 0 < δ̃ < 2 + δ/2, the α-mixing coefficient of {xi,n}ni=1

in Assumption 6 satisfies


∞

r=1 r
d(τ∗+1)−1α̂(r)δ̃/(4+2δ̃) < ∞,where

τ∗ = δ̃τ /(2 + δ̃).

Assumption 11. Σ0 = limn→∞Σn exists and is nonsingular,
whereΣn =

1
nVar

n
i=1 qi,n(θ0).

In Assumption 3(ii), we assume 0 6 |wij,n| 6 C0/d(i, j)α . But a
faster decreasing rate is required to obtain asymptotic normality.

Assumption 12. α > d · max(7 + 24δ−1, 5 + 32δ−1
+ 64δ−2).

Recall that under the two different settings in Assumption 3,
we have different NED coefficients. Under Assumption 3(1),
{qi,n(θ0)}ni=1 is a uniformly and geometrically L2-NED random field,
so Assumption 12 is not needed. Under Assumption 3(2)(ii), As-
sumption 12 is needed to derive the asymptotic distribution.
From the expression of qi,n(θ), most terms are products of two
NED random fields. Though the product of NED random fields
remains an NED random field, the NED coefficient usually de-
creases slower. Thus the NED coefficient of qi,n(θ) is slower than
the order O(1/s(α−d)/3) of I(yi,n = 0). Actually, we show that
the NED coefficient of the Euclidean norm of qi,n(θ) has the order
of max[s−(α−d)/3, s−(α−d)δ/(8+2δ)

]
δ/(8+2δ). To satisfy the condition

∞

s=1 s
d−1 max[s−(α−d)/3, s−(α−d)δ/(8+2δ)

]
δ/(8+2δ) < ∞, we thus

need Assumption 12. If {xi,n} has Gaussian or exponential decreas-
ing tails or is uniformly bounded, then δ can be arbitrarily large.
For such cases, as a consequence, Assumption 12 becomes α > 7d.

Proposition 5. In addition to Assumptions 1, 2 and 5–11, suppose
either Assumption 3(1), or Assumptions 3(2) and 12 hold, then
1

√
n

n
i=1 qi,n(θ0)

d
−→ N(0,Σ0).

Theorem 2. Under Assumptions 1, 2 and 5–11, if either Assump-
tion 3(1), or Assumptions 3(2) and 11 hold, then the MLE of
model (2) has

√
n(θ̂ − θ0)

d
−→ N(0,Σ−1

0 ).

6. Monte Carlo simulations

In this section, we perform some Monte Carlo studies to
investigate the finite sample performance of the MLE and the
robustness of estimates under non-normal disturbances. Our
simulation studies are based on some characteristics of the
empirical example in Qu and Lee (2012, 2013) that examines
tax competition among local governments.10 Specifically, they
study spatial effects when local governments in Iowa set their
school district income tax rates. In Iowa, this type of surtax
ranges from 0% to 20%. In 2009, 18.3% of the school districts out
of 361 in Iowa had 0% tax rates. Thus, the SAR Tobit model is
a suitable model for this example. The theoretical background,
detailed descriptive statistics of the data, and the data source can
be found in Qu and Lee (2012). We choose exogenous variables
with possibly significant marginal effects from their model, x =

(1, x2, x3, x4, x5), where x2, . . . , x5 represent the average income
(in $1000), the percentage of white students, pupil/taxpayer (%)
and property rates, respectively.We also let the true parameters in
the simulation be close to the estimator in the empirical example:
λ0 = 0.2, β ′

0 = (12,−0.4, 0.1, 1,−0.5) and σ0 = 5. Thus, we
consider the model Yn = F(λWnYn + Xnβ + ϵn), where n =

361 and ϵi,n’s are i.i.d. N(0, σ 2
0 ). The spatial weights matrix Wn is

row-normalized, representing the contiguity relationship between
different school districts. Specifically, Wn is row-normalized from
W ∗

n , where w∗

ij,n = 1 if two different school districts i and j share
some common borders, otherwise 0, andw∗

ii,n = 0.
To seemoreMC resultswith variations on the strength of spatial

interactions and sample size, we also try λ0 = 0.5 and another
sample size, 1121, in the experiments. When n = 1121, Wn is
a block diagonal matrix with two blocks. The first block is the
361 × 361 matrix when n = 361, as discussed in the above
paragraph, and the second block is a 760×760matrix representing
the contiguity relationship of 760 counties in the 10 Upper Great
Plains States.11 Wn is also row-normalized. The first 361 xi,n’s are
the same as those in the empirical example, and the last 760 are
random samples from a multivariate normal distribution with its
mean and covariance matrix estimated from the first 361.

With the data of Wn, Xn and ϵn, we generate the data of Yn by
contraction mapping. The iteration stops when ∥Yn − F(λ0WnYn +

10 Thank a co-editor and the associate editor of this journal for their suggestion in
designing the simulation based on empirical examples so that the MCs can capture
realistic features in its design.
11 The ten states include Colorado, Iowa, Kansas, Minnesota, Missouri, Montana,
Nebraska, North Dakota, South Dakota, and Wyoming.
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Table 1
Estimation results.

n true λ0 β10 β20 β30 β40 β50 σ0
0.2 12 −0.4 0.1 1 −0.5 5

361

mean 0.1803 12.1675 −0.4055 0.1025 0.9643 −0.5019 4.9668
std 0.0958 4.1465 0.0576 0.0307 0.4796 0.1301 0.2254
med 0.1814 12.1655 −0.4039 0.1017 0.9682 −0.5017 4.9636
q0.25 0.1179 9.5477 −0.4445 0.0824 0.6533 −0.5899 4.8181
q0.75 0.2480 15.0297 −0.3686 0.1221 1.2942 −0.4133 5.1111

1121

mean 0.1946 11.9754 −0.4002 0.1007 0.9989 −0.5011 4.9880
std 0.0575 2.2090 0.0271 0.0174 0.2783 0.0773 0.1322
med 0.1949 11.9789 −0.3997 0.1003 0.9961 −0.5019 4.9869
q0.25 0.1569 10.3960 −0.4180 0.0887 0.8147 −0.5501 4.9011
q0.75 0.2341 13.4676 −0.3827 0.1124 1.1899 −0.4458 5.0752

n true λ0 β10 β20 β30 β40 β10 σ0
0.5 12 −0.4 0.1 1 −0.5 5

361

mean 0.4828 12.2535 −0.4071 0.1024 0.9669 −0.5022 4.9729
std 0.0697 4.0974 0.0564 0.0300 0.4696 0.1278 0.2118
med 0.4844 12.2511 −0.4047 0.1014 0.9674 −0.5027 4.9677
q0.25 0.4398 9.7218 −0.4427 0.0824 0.6579 −0.5883 4.8315
q0.75 0.5322 14.9077 −0.3710 0.1210 1.2829 −0.4142 5.1091

1121

mean 0.4949 11.9888 −0.4004 0.1008 0.9995 −0.5004 4.9901
std 0.0416 2.1851 0.0263 0.0170 0.2726 0.0759 0.1203
med 0.4960 12.0760 −0.4002 0.1006 1.0085 −0.5001 4.9889
q0.25 0.4668 10.4038 −0.4168 0.0892 0.8178 −0.5498 4.9167
q0.75 0.5222 13.4577 −0.3831 0.1124 1.1770 −0.4474 5.0647

ϵi,n iid ∼ N(0, σ 2
0 ). Repetition: 1000. q0.25: The 25%quantile, q0.75: The 75%quantile.

Xnβ0+ϵn)∥∞ < 10−6. We obtain the empirical mean and standard
deviation, as well as median and quantiles of the estimates
based on 1000 replications for each of the experiments. For each
experiment,Wn and Xn are fixed for all the 1000 replications.

The estimation results are summarized in Table 1. The biases of
the estimates are rather small for both sample sizes 361 and 1121.
The medians are close to their true values. As the sample size n in-
creases, the standard errors of the estimates decrease, so do their
ranges constructed with 25 and 75 percentiles. The simulation re-
sults are compatible with the theoretical implication of Theorem 1.

In addition, to investigate the sensitivity of estimates on the
distribution of disturbances, we try two different non-normal
distributions, namely a uniform distribution σ0U(−

√
3,

√
3), and

a mixed normal distribution (with half probability σ0N(4/
√
17,

1/17), half probability σ0N(−4/
√
17, 1/17)). Simple calculations

show that both distributions have the same standard deviation σ0.
Notice that the density of this mixed normal distribution has two
peaks. As can be seen in Table 2, when the disturbance terms are
uniformly distributed, biases for all β̂k’s increase as n increases
from 361 to 1121. And under both distributions, biases for σ̂ are
large, and they are kept almost unchanged when n increases from
361 to 1121. The evidence strongly indicates the inconsistency of
our estimator under misspecification of the disturbance terms.12

7. Conclusion

After describing some economic applications of the SAR Tobit
model, this paper examines the ML estimation for this model. We
establish the NED properties of the dependent variable and some
relevant functions of the dependent variable. With the LLN and
CLT of the NED random field, we establish the consistency and the

12 For readers who may be interested, a supplemental file provides additional
simulation results under various data generating processes besides those presented
in the main text (see Appendix C).
asymptotic normality of the MLE of this model. Monte Carlo simu-
lations, based on the empirical study of the school district income
tax rate in Iowa in Qu and Lee (2012, 2013), show that biases and
standard deviations of MLE decrease as sample sizes increase. And
medians of estimates are also increasingly close to their true val-
ues. As the MLE method is computationally tractable, we can use
it to estimate an SAR Tobit model for empirical studies of samples
involving spatial correlation and censored data.

This paper focuses only on the large sample properties of the
MLE of the SAR Tobit model. And it does have a few limitations.
Most notably, we only consider the case in which the error terms
are independently, identically and normally distributed. Neverthe-
less, this paper has developed a solid foundation for future studies:
(1) The estimation of the SAR Tobit model with multiple weights
matrices could be considered. Because the ML approach would
not be computationally tractable formodels withmultiple weights
matrices with samples of large sizes, one needs to develop compu-
tationally tractablemethods for its estimation. (2) The spatial error
Tobitmodel could be considered. For such amodel, the issue is how
to develop efficient estimation methods. In such a case, multivari-
ate joint probability for censored observationswill be involved, and
hence the simulation estimation method is a possible approach,
but asymptotic properties of such possible estimators due to sim-
ulation need to be understood. (3) It would also be interesting and
important to develop distributional-free estimation approaches for
the SAR Tobit model.
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Appendix A. Some useful lemmas

In the proof, we use C , C1, C2 · · · to represent some positive
constants, which can be different in different places.

Lemma A.1 (Lemma 17.15 in Davidson, 1994). Let B and ρ be two
nonnegative random variables and assume ∥ρ∥q < ∞, ∥B∥p < ∞,
and ∥Bρ∥r < ∞, for q−1

+ p−1
= 1, q > 1 and r > 2. Then

∥Bρ∥2 6 2(∥ρ∥
r−2
q ∥B∥r−2

p ∥Bρ∥
r
r)

1/(2r−2).

Lemma A.2 (Generalization of Corollary 4.3(b), Gallant and White,
1988). If, for all i and n, ∥Yi,n∥2r 6 ∆ < ∞ and ∥Zi,n∥2r 6
∆ < ∞ for some r > 2, ∥Yi,n − E[Yi,n|Fi,n(s)]∥2 6
di,Ynψ(s) and ∥Zi,n − E[Zi,n|Fi,n(s)]∥2 6 di,Znψ(s), then ∥Yi,nZi,n −

E[Yi,nZi,n|Fi,n(s)]∥2 6 di,nψ̃(s), where di,n = 2(3r−2)/(r−1)(di,Zn +

di,Yn)(r−2)/(2r−2)∆(3r−2)/(2r−2) and ψ̃(s) = ψ(s)(r−2)/(2r−2).
Specifically, if {Yi,n} and {Zi,n} are both uniformly L2r bounded, and

uniformly and geometrically L2-NED, then {Yi,nZi,n} is uniformly and
geometrically L2-NED.

Lemma A.3. Let A = (aij) and B = (bij) be two n×nmatrices, and let
e be a column vector of dimension n. If |A|max ≡ maxi,j |aij|, then for
any positive integer l, ∥[(A+B)l −Bl

]e∥∞ 6 |A|max
l−1

h=0 ∥B∥h
∞

∥A+

B∥l−1−h
1 ∥e∥1.
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Table 2
Robust check of estimates.

distribution n true λ0 β10 β20 β30 β40 β50 σ0
0.2 12 −0.4 0.1 1 −0.5 5

uniform

361

mean 0.1740 12.0245 −0.4073 0.1000 1.0049 −0.4883 5.2737
std 0.0970 4.2987 0.0569 0.0321 0.5327 0.1420 0.1890
med 0.1775 11.7996 −0.4050 0.0999 1.0339 −0.4893 5.2758
q0.25 0.1102 8.9364 −0.4433 0.0783 0.6656 −0.5798 5.1511
q0.75 0.2397 15.1041 −0.3691 0.1219 1.3511 −0.3943 5.3969

1121

mean 0.1919 11.7782 −0.3928 0.0977 0.9787 −0.4878 5.2578
std 0.0606 2.2492 0.0266 0.0169 0.2916 0.0787 0.1117
med 0.1933 11.7711 −0.3926 0.0981 0.9892 −0.4876 5.2573
q0.25 0.1520 10.1608 −0.4115 0.0859 0.7845 −0.5442 5.1780
q0.75 0.2343 13.3425 −0.3746 0.1087 1.1730 −0.4332 5.3315

mixed normal

361

mean 0.1801 12.4155 −0.4130 0.0944 1.0931 −0.4972 5.5238
std 0.1011 4.5158 0.0570 0.0325 0.5537 0.1508 0.1590
med 0.1842 12.4687 −0.4117 0.0932 1.1020 −0.4989 5.5217
q0.25 0.1169 9.5443 −0.4497 0.0724 0.7249 −0.5969 5.4137
q0.75 0.2487 15.3543 −0.3738 0.1155 1.4563 −0.4032 5.6328

1121

mean 0.1929 11.6609 −0.3920 0.0961 1.0058 −0.4875 5.5244
std 0.0598 2.3620 0.0272 0.0180 0.3066 0.0852 0.0883
med 0.1924 11.6489 −0.3909 0.0965 1.0079 −0.4915 5.5227
q0.25 0.1546 10.0934 −0.4102 0.0837 0.8002 −0.5442 5.4650
q0.75 0.2334 13.2495 −0.3735 0.1084 1.2119 −0.4276 5.5874

ϵi,n iid ∼ (0, σ 2
0 ). Repetition: 1000. q0.25: The 25% quantile, q0.75: The 75% quantile, uniform distribution: σ0U(−

√
3,

√
3), mixed normal distribution: half probability

σ0N(4/
√
17, 1/17), half probability σ0N(−4/

√
17, 1/17).
Proof of Lemma A.3. Let W = A + B. By expansion, W l
− Bl

=l−1
h=0 B

hAW l−1−h. For any matrix M of dimension n, ∥Me∥∞ 6

|M|max∥e∥1. Thus, for any h = 0, . . . , l − 1, ∥BhAW l−1−he∥∞ 6
∥Bh

∥∞∥AW l−1−he∥∞ 6 ∥Bh
∥∞|A|max∥W l−1−he∥1 6 |A|max∥Bh

∥∞

∥W∥
l−1−h
1 ∥e∥1. Together, we have the result. �

Lemma A.4. G(x) : Domain(⊂ R) → R satisfies |G(x1) − G(x2)| 6
C1(|x1|a + |x2|a + 1)|x1 − x2| for some integer a > 1. If {ui,n}

n
i=1

is a random field with ∥ui,n − E[ui,n|Fi,n(s)]∥2 6 C2ψ(s) for all
i and n, and supi,n ∥ui,n∥p < ∞ for some p > 2a + 2, then
∥G(ui,n)− E[G(ui,n)|Fi,n(s)]∥2 6 Cψ(s)(p−2a−2)/(2p−2a−2).

Proof of Lemma A.4. Because p/(a+1) > 2, with Lemma A.1, we
have

∥G(ui,n)− E[G(ui,n)|Fi,n(s)]∥2 6 ∥G(ui,n)− G(E[ui,n|Fi,n(s)])∥2

6 C1∥(|ui,n|
a
+ |E[ui,n|Fi,n(s)]|a + 1) · (ui,n − E[ui,n|Fi,n(s)])∥2

6 2C1∥Bi,n∥
(p−2a−2)/(2p−2a−2)
2 ∥ρi,n∥

(p−2a−2)/(2p−2a−2)
2

× ∥Bi,nρi,n∥
p/(2p−2a−2)
p/(a+1) ,

where Bi,n = |ui,n|
a

+ |E[ui,n|Fi,n(s)]|a + 1 and ρi,n = ui,n −

E[ui,n|Fi,n(s)]. By Jensen’s inequality, ∥Bi,n∥p/a 6 2∥ui,n∥
a
p + 1

and ∥ρi,n∥p 6 2∥ui,n∥p for p > 1.13 By generalized Hölder’s
inequality, we have supi,n ∥Bi,nρi,n∥p/(a+1) 6 supi,n ∥B∥p/a∥ρi,n∥p 6
supi,n(2∥ui,n∥

a
p+1)·2∥ui,n∥p < ∞. Thus the conclusion holds. �

Lemma A.5. Assume u(v) : Rp
→ Rp satisfies ∥u(v1) − u(v2)∥ 6

C∥v1 − v2∥ for some constant C > 0 and for all v1 and v2.
(1) If {fn(u) : Rp

→ R}ni=1 is equicontinuous with respect to u,
then {fn(u(v)) : Rp

→ R}ni=1 is equicontinuous with respect to v.
(2) If {fn(u) : Rp

→ R}ni=1 is stochastically equicontinuous (SE)
with respect to u, then {fn(u(v)) : Rp

→ R}ni=1 is SE with respect to v.

Proof. (1) Because {fn(u) : Rp
→ R}ni=1 is equicontinuous, for any

constant ϵ > 0, there exists δ > 0 such that when ∥u1 − u2∥ < δ,
|fn(u1) − fn(u2)| < ϵ for any n. When ∥v1 − v2∥ < δ/C , ∥u(v1) −

u(v2)∥ 6 δ, thus |fn(u(v1))− fn(u(v2))| < ϵ for any n. (2) Because

13 By Jensen’s inequality, for a > 1 and b > 1, ∥Ea(|x ∥ F )∥b 6 ∥x∥a
ab .
{fn(u) : Rp
→ R}ni=1 is SE, for any constant ϵ > 0, there exists

δ > 0 such that lim supn→∞ P(sup∥u1−u2∥<δ |fn(u1) − fn(u2)| >
ϵ) < ϵ. When ∥v1 − v2∥ < δ/C , ∥u(v1) − u(v2)∥ 6 δ, thus
lim supn→∞ P(sup∥v1−v2∥<δ/C |fn(u1)− fn(u2)| > ϵ) < ϵ. �

Lemma A.6. Assume f : D(⊂ R) → R satisfies |f (x1) − f (x2)| 6
C(|x1|a + |x2|a + 1)|x1 − x2| for some constants a > 1, C >
0, and for all x1, x2 ∈ D. If the random field {xi,n}ni=1 ⊂ RK

satisfies supi,j,n ∥xij,n∥max(2a,4) < ∞ and supi,j,n ∥h(xi,n)∥4 < ∞,
then {

1
n

n
i=1 f (xi,nθ)h(xi,n)}

∞

n=1 is SE with respect to θ , where the
parameter spaceΘ(⊂ RK ) of θ is bounded.

Proof.1n
n

i=1

f (xi,nθ1)h(xi,n)−
1
n

n
i=1

f (xi,nθ2)h(xi,n)


6

1
n

n
i=1

|[f (xi,nθ1)− f (xi,nθ2)]h(xi,n)|

6
C
n

n
i=1

(|xi,nθ1|a + |xi,nθ2|a + 1)|xi,n(θ1 − θ2)| · |h(xi,n)|

6
C
n

n
i=1


K a−1

K
j=1

|xij,nθ1j|a + K a−1
K

j=1

|xij,nθ2j|a + 1


|h(xi,n)|

·


K

k=1

|xik,n| · |θ1k − θ2k|



6
C
n

n
i=1


2K a−1

K
j=1

|xij,n|a(sup
θ∈Θ

|θj|)
a
+ 1


|h(xi,n)|

·


K

k=1

|xik,n| · |θ1k − θ2k|


,

where the third inequality comes from Cr -inequality. By Cauchy’s
inequality,14

14 If random variables X and Y satisfy ∥X∥2p < ∞ and ∥Y∥2p < ∞ for p > 1, then
∥XY∥p 6 ∥X∥2p∥Y∥2p .
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1n
n

i=1


2K a−1

K
j=1

|xij,n|a

sup
θ∈Θ

|θj|

a

+ 1


|h(xi,n)| · |xik,n|


1

6
1
n

n
i=1

2K a−1
K

j=1

|xij,n|a

sup
θ∈Θ

|θj|

a

+ 1


2

· ∥h(xi,n)xik,n∥2

6
1
n

n
i=1

2K a−1
K

j=1

|xij,n|a

sup
θ∈Θ

|θj|

a

+ 1


2

· ∥h(xi,n)∥4

· ∥xik,n∥4 < ∞.

Hence, by Markov’s inequality, 1
n

n
i=1{2K

a−1K
j=1 |xij,n|a(supθ∈Θ

|θj|)
a
+ 1}|h(xi,n)xik,n| = Op(1). Thus, { 1

n

n
i=1 f (xi,nθ)h(xi,n)}

∞

n=1 is
SE with respect to θ by Lemma 1(a) in Andrews (1992). �

Lemma A.7. Under Assumption 1, let An = (aij,n) be an n × n
nonstochastic matrix satisfying aij,n = 0 when d(i, j) > d̄0 > 0,
where d(i, j) is the distance between individuals i and j. Suppose
supn ∥An∥∞ 6 η < 1 and, the sequence of random variables {vi,n}

n
i=1

satisfies −1 6 vi,n 6 1 and ∥vi,n − E[vi,n|Fi,n(md̄0)]∥2 6 Cηm,
where Fi,n(md̄0) = σ({ϵj,n : d(j, i) 6 md̄0}), for some positive
constant C > 0, for all positive integers m’s, i’s and n’s. Denote
Gn = diag(v1,n, . . . , vn,n). Then, for any positive integer l,
(i) {gi,ln ≡ (GnAnGn)

l
ii}

n
i=1 satisfies ∥gi,ln − E[gi,ln|Fi,n(md̄0)]∥2 <

(2ηmax(1, C)/(1 − η))ηm;
(ii) {ui,n ≡ [(In − GnAnGn)

−1GnAnGn]
l
ii}

n
i=1 satisfies ∥ui,n −

E[ui,n|Fi,n(md̄0)]∥2 6 Clmlηm for some constant Cl > 0.

Proof of Lemma A.7. (i) (GnAnGn)
l
ii =


j1

· · ·


jl−1
aij1,naj1j2,n · · ·

ajl−1i,nv
2
i,nv

2
j1,n

· · · v2jl−1,n
. When aij1,naj1j2,n · · · ajl−1i,n ≠ 0, we have

d(i, j1) 6 d̄0, d(j1, j2) 6 d̄0, · · · . ThusFjh,n((m−h)d̄0) ⊆ Fi,n(md̄0).
For simplicity of notations, let j0 = i. As the absolute values of vj,n’s
are less than or equal to one and the product of vj,n’s is a Lipschitz
function, whenm > l,v2i,nv2j1,n · · · v2jl−1,n − E


v2i,nv

2
j1,n · · · v2jl−1,n|Fi,n(md̄0)


2

6

l−1
h=0

∥v2jh,n − E[v2jh,n|Fi,n(md̄0)]∥2

6 2
l−1
h=0

∥vjh,n − E[vjh,n|Fi,n(md̄0)]∥2

6 2
l−1
h=0

∥vjh,n − E[vjh,n|Fjh,n((m − h)d̄0)]∥2 6 2
l−1
h=0

Cηm−h,

where the second inequality follows from that v2 is a Lipschitz
function on [−1, 1]. When m 6 h, |v2jh,n − E[v2jh,n|Fi,n(md̄0)] ∥2 6

1 6 max(1, C)ηm−h. So the above inequality still holds if we
replace C by max(1, C). Thus,

∥gi,ln − E[gi,ln|Fi,n(md̄0)]∥2

6

j1

· · ·


jl−1

|aij1,naj1j2,n · · · ajl−1 i,n|

· ∥v2i,nv
2
j1,n · · · v2jl−1,n − E[v2i,nv

2
j1,n · · · v2jl−1,n|Fi,n(md̄0)]∥2

6 ∥An∥
l
∞
2max(1, C)

l−1
h=0

ηm−h 6


2max(1, C)

l−1
h=0

ηl−h


ηm

< (2ηmax(1, C)/(1 − η))ηm.

(ii) Notice

[(In − GnAnGn)
−1GnAnGn]

l
ii =

 l
j=1

∞
Lj=1

[GnAnGn]
Lj


ii
=

∞
k=l


L1+L2+···+Ll=k

[GnAnGn]
k
ii =

∞
k=l


k + l − 1
l − 1


gi,kn

6

∞
k=l

(k + l − 1)l−1gi,kn, (9)

where the third equality follows fromSheldon (2002).Whenm 6 l,

∥ui,n − E[ui,n|Fi,n(md̄0)]∥2 =

 ∞
k=l


L1+L2+···+Ll=k

(GnAnGn)
k
ii

− E


∞
k=l


L1+L2+···+Ll=k

(GnAnGn)
k
ii|Fi,n(md̄0)


2

6

∞
k=l

(k + l − 1)l−1
∥gi,kn − E[gi,kn|Fi,n(md̄0)]∥2

6

∞
k=l

(k + l − 1)l−1

j1

· · ·


jk−1

|aij1,n · · · ajk−1 i,n|

· ∥v2i,n · · · v2jk−1,n − E[v2i,n · · · v2jk−1,n|Fi,n(md̄0)]∥2

6

∞
k=l

(k + l − 1)l−1ηk <


∞

l−1
(x + l)l−1ηxdx

6


∞

m−1
(x + l)l−1ηxdx,

where the third inequality comes from ∥v2i,n · · · v2jk−1,n
− E[v2i,n · · ·

v2jk−1,n
|Fi,n(md̄0)]∥2 6 1. By l’Hôpital’s rule,

lim
m→∞


∞

m−1(x + l)l−1ηxdx

(m − 1 + l)l−1ηm−1

= lim
m→∞

−(m − 1 + l)l−1ηm−1

(ln η)(m − 1 + l)l−1ηm−1 + (l − 1)(m − 1 + l)l−2ηm−1

=
−1
ln η

.

Thus, for some constant C1l > 0,


∞

x=m−1(x + l)l−1ηxdx 6 C1lmlηm.
Therefore, we obtain ∥ui,n − E[ui,n|Fi,n(md̄0)]∥2 < C1lmlηm.

Whenm > l,

∥ui,n − E[ui,n|Fi,n(md̄0)]∥2 =

 ∞
k=l


L1+L2+···+Ll=k

(GnAnGn)
k
ii

− E


∞
k=l


L1+L2+···+Ll=k

(GnAnGn)
k
ii|Fi,n(md̄0)


2

6

m−1
k=l

(k + l − 1)l−1
∥gi,kn − E[gi,kn|Fi,n(md̄0)]∥2

+

∞
k=m

(k + l − 1)l−1
∥gi,kn − E[gi,kn|Fi,n(md̄0)]∥2

6

m−1
k=l

(k + l − 1)l−1(2ηC/(1 − η))ηm +

∞
k=m

(k + l − 1)l−1ηk

6 (2ηC/(1 − η))

 m+l−2

2l−1
xl−1dx · ηm +

∞
k=m

(k + l − 1)l−1ηk

< (2ηC/(1 − η)) ·
(m + l − 2)l − (2l − 1)l

l
ηm

+


∞

m−1
(x + l)l−1ηxdx 6 C2lmlηm + C1lmlηm
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for some constant C2l > 0. Thus ∥ui,n − E[ui,n|Fi,n(md̄0)]∥2 6

(C1l + C2l)mlηm. �

Lemma A.8. Under Assumption 1, let An = (aij,n) be an n × n
nonstochastic matrix with |aij,n| 6 C0d(i, j)−α for some positive
constants C0 and α, where d(i, j) is the distance between individuals
i and j. Suppose supn ∥An∥∞ 6 η < 1 and, for all positive
integer numbers l, supn ∥|An|

l
∥1 6 C2lηl for some constant C2,

where |An| ≡ (|aij,n|)n×n. {vi,n}
n
i=1 satisfies −1 6 vi,n 6 1 and

∥vi,n − E[vi,n|Fi,n(s)]∥2 6 C1s−p for some positive constant p < α,
all i’s and n’s, where Fi,n(s) = σ({ϵj,n : d(j, i) 6 s}). Denote
Gn = diag(v1,n, . . . , vn,n). Then, for any natural number l,
(i) {gi,ln ≡ (GnAnGn)

l
ii}

n
i=1 satisfies ∥gi,ln − E[gi,ln|Fi,n(s)]∥2 6

Cls−p for some constant Cl > 0;
(ii) {ui,n ≡ [(In − GnAnGn)

−1GnAnGn]
l
ii}

n
i=1 satisfies ∥ui,n −

E[ui,n|Fi,n(s)]∥2 6 Cls−p for some constant Cl > 0.

Proof of Lemma A.8. (i) Given any distance s > 0, we separate
the product terms in the summation


j1

· · ·


jl−1
into two parts:

the first part, denoted as P(1), with the distance of each pair of
successive nodes in the chain i → j1 → j2 → · · · → jl−1 → i
less than s/l, while the second part, denoted P(2), consists of the
other product terms. Thus in P(2), there exists at least one element
among {aij1,n, aj1j2,n, . . . ajl−1 i,n} that is 6 C0(s/l)−α . Let j0 = i. In
P(1), notice that

∥v2i,nv
2
j1,n · · · v2jl−1,n − E[v2i,nv

2
j1,n · · · v2jl−1,n|Fi,n(s)]∥2

6

l−1
h=0

∥v2jh,n − E[v2jh,n|Fi,n(s)]∥2

6

l−1
h=0

∥v2jh,n − E2
[vjh,n|Fi,n(s)]∥2

6 2
l−1
h=0

∥vjh,n − E[vjh,n|Fjh,n(s − hs/l)]∥2

6 2C1lp
l−1
h=0

(l − h)−p
· s−p, (10)

where the third inequality follows from that x2 is a Lipschitz
function on [−1, 1] and B(jh, s − hs/l) ⊆ B(i, s). Define A1n as
follows: when |aij,n| 6 C0(s/l)−α , aij,1n = |aij,n|; when aij,n >
C0(s/l)−α , aij,1n = 0. A2n is defined by aij,2n ≡ |aij,n| − |aij,1n|. Thus
every element in A2n is either 0 or> C0(s/l)−α . Hence,
P(2)

|aij1,naj1j2,n · · · ajl−1 i,n| 6 [(A1n + A2n)
l
]ii − (Al

2n)ii

6 C0(s/l)−α
l−1
h=0

∥A2n∥
h
∞

∥|An|
l−h−1

∥1

6


C0lα

l−1
h=0

∥An∥
h
∞
C2(l − h − 1)ηl−h−1


s−α

6


C0C2η

l−1lα
l−1
h=0

(l − h − 1)


s−α

6

C0C2η

l−1lα+1(l − 1)/2

s−α = C2ls−α, (11)

where the first inequality follows from Lemma A.3. Hence, with
Eq. (10),

∥gi,ln − E[gi,ln|Fi,n(s)]∥2 6

P(2)

|aij1,naj1j2,n · · · ajl−1i,n|

+


P(1)

|aij1,naj1j2,n · · · ajl−1 i,n|
· ∥v2i,nv
2
j1,n · · · v2jl−1,n − E[v2i,nv

2
j1,n · · · v2jl−1,n|Fi,n(s)]∥2

6 C2ls−α + ηl · 2C1lp
l−1
h=0

(l − h)−p
· s−p 6 Cls−p, (12)

where the last inequality results from α > p.
(ii) By Eqs. (9), (11) and (12),

∥ui,n − E[ui,n|Fi,n(s)]∥2 6

∞
k=l

(k + l − 1)l−1

×


2C1kp

k−1
h=0

(k − h)−pηks−p
+ C0C2η

k−1kα+1 k − 1
2

s−α


6

∞
k=l

(k + l − 1)l−1 2C1kp+1
· ηk · s−p

+ 0.5C0C2η
k−1kα+2

· s−α


6 C3ls−p
+ C4ls−α 6 Cls−p

for some constant Cl > 0, because 0 < η < 1. �

Lemma A.9. (1) Under Assumption 2, if sup16k6K ,i,n E|xik,n|p < ∞

and supi,n E|ϵi,n|p < ∞ for some p > 2, 2, 1 and 2 respectively, then
{z2i,n(θ)}

n
i=1, {lnΦ(zi,n(θ))}ni=1, {

φ(zi,n(θ))
Φ(zi,n(θ))

}
n
i=1 and {

φ(zi,n(θ))zi,n(θ)
Φ(zi,n(θ))

}
n
i=1

are respectively uniformly (in i and n) Lp/2, Lp/2, Lp and Lp/2 bounded.
(2) Under Assumptions 1–3(1), if sup16k6K ,i,n E|xik,n|p < ∞

and supi,n E|ϵi,n|p < ∞ for some p > 4, 4, 6 and 8
respectively, then {z2i,n(θ)}

n
i=1, {lnΦ(zi,n(θ))}ni=1, {

φ(zi,n(θ))
Φ(zi,n(θ))

}
n
i=1 and

{
φ(zi,n(θ))zi,n(θ)
Φ(zi,n(θ))

}
n
i=1 are uniformly (in i and n) and geometrically

L2-NED on

xi,n, ϵi,n

n
i=1 with NED coefficients ζ s(p−4)/((2p−4)d̄0),

ζ s(p−4)/((2p−4)d̄0), ζ s(p−6)/((2p−6)d̄0) and ζ s(p−8)/((2p−8)d̄0), respectively.
(3) Under Assumptions 1–3(2), if sup16k6K ,i,n E|xik,n|p < ∞ and

supi,n E|ϵi,n|p < ∞ for some p > 4, 4, 6 and 8 respectively, then
{z2i,n(θ)}

n
i=1, {lnΦ(zi,n(θ))}ni=1, {

φ(zi,n(θ))
Φ(zi,n(θ))

}
n
i=1 and {

φ(zi,n(θ))zi,n(θ)
Φ(zi,n(θ))

}
n
i=1

are uniformly (in i and n) L2-NED on

xi,n, ϵi,n

n
i=1 with NED

coefficients s−(α−d)(p−4)/(2p−4), s−(α−d)(p−4)/(2p−4), s−(α−d)(p−6)/(2p−6)

and s−(α−d)(p−8)/(2p−8), respectively.

Proof of Lemma A.9. First, we consider {z2i,n(θ)}
n
i=1. Notice that

|z21 − z22 | = |z1 + z2| · |z1 − z2| 6 (|z1| + |z2| + 1) · |z1 −

z2|, thus the conclusion holds by Proposition 1 and Lemma A.4
with a there to be 1. Second, we consider {lnΦ(zi,n(θ))}ni=1. Let
G(x) ≡ lnΦ(x) and g(x) = G′(x) =

φ(x)
Φ(x) > 0. Be-

cause g ′(x) = −φ(x)[φ(x) + xΦ(x)]/Φ2(x) and it is known
that φ(x) + xΦ(x) > 0, thus g(x) is a strictly decreas-
ing function. Notice that limx→−∞ g(x) = limx→−∞

−xφ(x)
φ(x) =

+∞. And limx→−∞ g(x)/x = limx→−∞ φ(x)/[Φ(x)x] =

limx→−∞
−xφ(x)

Φ(x)+xφ(x) = limx→−∞
−1

1+Φ(x)/[xφ(x)] = −1. Thus |g(x)| <
2|x| + C1 for some constant C1 > 0. By the mean value theorem,
there exists x̄ between x and 0 such that |G(x)| 6 |g(x̄)x|+|G(0)| 6
(2|x|+C1)|x|+|G(0)| = 2x2+C1|x|+|G(0)|. Thus by Proposition 1,
we have the uniform Lp/2 boundedness. Further, |G(x1)− G(x2)| =

|g(x̄)(x1 − x2)| 6 (2|x1| + 2|x2| + C1)|x1 − x2|, because this x̄ lies
between x1 and x2. Therefore, we obtain the conclusion by Propo-
sition 1 and Lemma A.4.

Third, we consider {φ(zi,n(θ))/Φ(zi,n(θ))}ni=1. Recall |g(x)| <
2|x| + C1, thus {g(zi,n(θ))}ni=1 is uniformly Lp bounded. g ′(x) =

−xg(x) − g2(x). Because g(x) 6 2|x| + C1, |xg(x)| 6 2x2 + C1|x|
and g2(x) 6 (2|x| + C1)

2. Therefore, |g ′(x)| 6 C2(x2 + 1) for some
constant C2 > 0. Hence, |g(x1)− g(x2)| 6 C2(x21 + x22 + 1)|x1 − x2|.
Then the NED properties of {g(zi,n)}ni=1 come from Proposition 1
and Lemma A.4.
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Finally, we study {φ(zi,n(θ))zi,n(θ)/Φ(zi,n(θ))}ni=1. Let h(x) =

φ(x)x/Φ(x). Because g(x) < 2|x| + C1 for some constant C1 > 0.
Thus |xg(x)| 6 2x2 + C1|x| and by Proposition 1, { φ(zi,n(θ))zi,n(θ)

Φ(zi,n(θ))
}
n
i=1

is uniformly Lp/2 bounded. Because h′(x) = g(x)+ xg ′(x), |h′(x)| 6

C2(|x|3 + 1) for some constant C2 > 0. Then |h(x1) − h(x2)| 6
C2(|x1|3 + |x2|3 + 1)|x1 − x2|. Hence, with Proposition 1 and
Lemma A.4, we have the conclusion. �

Appendix B. Proofs

Proof of Lemma 1. Whenλ0 = 0, the conclusion is trivial. Thus, in
the remaining proof, we assume λ0 ≠ 0. In the following proof, for
any matrix A = (aij), denote |A| = (|aij|). By Lemma A.1 in Jenish
and Prucha (2009), |{j : m 6 d(i, j) < m + 1}| 6 Cmd−1 for some
constant C > 0 when m > 1. Then Γ = |λ0| supn ∥Wn∥1 < ∞

comes from

sup
n

∥Wn∥1 = sup
n,j

n
i=1

|wij,n| = sup
n,j

∞
m=1


i:m6d(i,j)<m+1

|wij,n|

6 sup
j

∞
m=1


i:m6d(i,j)<m+1

C0m−α 6

∞
m=1

Cmd−1C0m−α < ∞.

To simplify notations, we will use Wn to replace |Wn| in the rest
of the proof, because the analysis will work on upper bounds
of inequalities. ∥W l

n∥1 = maxi=1,...,n, ∥W l
nei∥1, where ei =

(0, . . . , 0, 1, 0, . . . , 0)′ is the ith unit vector of dimension n. Let
ιn =

n
i=1 ei. Then ∥W l

nei∥1 = ι′n|W
l
nei|. Without loss of generality,

assume that only the first N columns satisfy Γ > |λ0|


i |wij,n| >
ζ and the remaining n−N columns satisfy |λ0|


i |wij,n| 6 ζ . Then,

for l > 1,

ι′n|W
l
nei| = (ι′nw·1,n, . . . , ι

′

nw·n,n)|W l−1
n ei|

= (ι′nw·1,n, . . . , ι
′

nw·N,n, 0, . . . , 0)|W l−1
n ei|

+ (0, . . . , 0, ι′nw·(N+1),n, . . . , ι
′

nw·n,n)|W l−1
n ei|

6 ∥(ι′nw·1,n, . . . , ι
′

nw·N,n, 0, . . . , 0)′∥1∥W l−1
n ei∥∞

+ ∥(0, . . . , 0, ι′nw·(N+1),n, . . . , ι
′

nw·n,n)
′
∥∞∥W l−1

n ei∥1

6 N|λ−1
0 |Γ ∥W l−1

n ei∥∞ + λ−1
m ζ∥W

l−1
n ei∥1

6 N|λ−1
0 |Γ ∥W l−1

n ∥∞∥ei∥∞ + λ−1
m ζ∥W

l−1
n ei∥1

6 N|λ−l
0 |Γ ζ l−1

+ |λ−1
0 |ζ∥W l−1

n ei∥1.

Thus ∥W l
nei∥1 6 N|λ−l

0 |Γ ζ l−1
+ |λ−1

0 |ζ∥W l−1
n ei∥1. With recursion

and ∥Wnei∥1 6 |λ−1
0 |Γ , we obtain that ∥λl0W

l
nei∥1 6 [(l − 1)N +

1]Γ ζ l−1 6 max(lN, 1)Γ ζ l−1. �

Proof of Proposition 1. As before, for any matrix A = (aij), we
denote |A| = (|aij|).

(1): Denote the solution of Yn = F(λ0WnYn + Xnβ0 + ϵn) as
Yn(Xnβ0 + ϵn). Clearly, Yn(0) = 0. Even though F(x) = max(0, x)
is not differentiable, we can apply the mean value theorem of a
convex function (Wegge, 1974) to F(·): Yn(Xnβ0 + ϵn) − Yn(0) =

fDn [λ0Wn(Yn(Xnβ0 + ϵn) − Yn(0)) + Xnβ0 + ϵn], where fDn is a
diagonal matrix whose ith diagonal element is some subgradient
of F(·) at some points between λwi·,nyi,n(Xnβ0 + ϵn) and 0. Thus
Yn(Xnβ0 + ϵn) − Yn(0) = (In − λ0fDnWn)

−1fDn(Xnβ0 + ϵn). Notice
subgradients of F(·) are always between 0 and 1 and therefore,
(In − λ0fDnWn)

−1fDn =


∞

l=0 λ
l
0(fDnWn)

lfDn 6∗


∞

l=0 |λ0Wn|
l

=

(In − |λ0Wn|)
−1

≡ Mn ≡ (mij,n), where A6∗ B means |aij| 6 |bij|
for all i’s and j’s. Hence, |yi,n(Xnβ0 + ϵn)| 6

n
j=1 mij,n|xj,nβ + ϵj,n|.

Furthermore, by Minkowski’s inequality, ∥yi,n(Xnβ0 + ϵn)∥p 6
n
j=1 mij,n∥xj,nβ + ϵj,n∥p. With the uniform Lp-boundedness of

{yi,n}ni=1, the uniform Lp-boundedness of {wi.,nYn}
n
i=1, {zi,n(θ)}ni=1

and {y∗

i,n}
n
i=1 are a direct result of Minkowski’s inequality.

(2) and (3): We first discuss the NED properties of {yi,n}ni=1. Let
Y (1)n = F(λ0WnY

(1)
n + X (1)n β0 + ϵ

(1)
n ) and Y (2)n = F(λ0WnY

(2)
n +

X (2)n β0 + ϵ
(2)
n ). Then Y (1)n − Y (2)n = fDn [λ0Wn(Y

(1)
n − Y (2)n )+ (X (1)n −

X (2)n )β0 + (ϵ
(1)
n − ϵ

(2)
n )], where fDn is a diagonal matrix whose

ith diagonal element is some subgradient of F(·) at some point
between λ0wi·,ny

(1)
i,n + x(1)j,nβ0 + ϵ

(1)
j,n and λ0wi·,ny

(2)
i,n + x(2)j,nβ0 + ϵ

(2)
j,n .

Thus, Y (1)n − Y (2)n = (In − λ0fDnWn)
−1fDn [(X

(1)
n − X (2)n )β0 + (ϵ

(1)
n −

ϵ
(2)
n )]. As in part (1), (In − λ0fDnWn)

−1fDn 6∗ Mn. Then by Prop. 1
in Jenish and Prucha (2012) and its proof, ∥yi,n −E[yi,n|Fi,n(s)]∥2 6
supj,n ∥ϵj,n + xj,nβ0∥2 supi,n


j:d(i,j)>s mij,n. We discuss the two

cases in this proposition in the following:
(i) Under Assumption 3(1),

sup
i,n


j:d(i,j)>s

mij,n = sup
i,n


j:d(i,j)>s


l

|λ0|
l
· |(|Wn|

l)ij|

6 sup
i,n


j:d(i,j)>s


l=[s/d̄0]+1

|λ0|
l
· |(|Wn|

l)ij|

= sup
i,n


l=[s/d̄0]+1


j:d(i,j)>s

|λ0|
l
· |(|Wn|

l)ij|

6 sup
i,n


l=[s/d̄0]+1

ζ l 6 (1 − ζ )−1ζ s/d̄0 .

(ii) When λ0 = 0, it is trivial. Otherwise, under Assump-
tion 3(2), for any positive integer l, define WAn as follows: when
|wij,n| 6 C0(d(i, j)/l)−α , where C0 and α are those constants in
Assumption 4, wij,An = |wij,n|; when |wij,n| > C0(d(i, j)/l)−α ,
wij,An = 0. WBn ≡ |Wn| − WAn. Thus any element in WBn is ei-
ther 0 or> C0(d(i, j)/l)−α . Note that for all i’s and j’s,wij,Anwij,Bn =

0. Now we calculate


k1
· · ·


kl−1
|wik1,nwk1k2,n · · ·wkl−1j,n|. For

each product term of the summation, at least one element in
a product is 6 C0/(d(i, j)/l)α , because there exist at least two
neighboring points in the chain i → k1 → · · · kl−1 →

j such that their distance is at least d(i, j)/l. Thus (W l
Bn)ij =

k1
· · ·


kl−1
wik1,Bnwk1k2,Bn · · ·wkl−1j,Bn = 0. By Lemma A.3,

k1

· · ·


kl−1

|wik1,nwk1k2,n · · ·wkl−2kl−1,nwkl−1j,n|

= (|Wn|
l)ij = [(WBn + WAn)

l
]ij − (W l

Bn)ij

6 C0(d(i, j)/l)−α
l−1
h=0

∥WBn∥
h
∞

∥(|Wn|
l−h−1)∥1

6 C0(d(i, j)/l)−α
l−1
h=0

∥Wn∥
h
∞
C1(l − h − 1)


ζ

λ0

l−h−1

, (13)

for some constant C1 > 0, where, in the last inequality, Lemma 1
is used for column sums. Thus, for any j ≠ i,

|(In − |λ0Wn|)
−1
ij | =

∞
l=1

|λ0Wn|
l
ij

=

∞
l=1

|λl0|

k1

· · ·


kl−1

|wik1,nwk1k2,n · · ·wkl−1j,n|

6 C0C1

∞
l=1

|λl0|(d(i, j)/l)
−α

l−1
h=0

∥Wn∥
h
∞
(l − h − 1)(ζ/|λ0|)l−h−1

6 C0C1|λ0|

∞
l=1

(d(i, j)/l)−α
l−1
h=0

(l − h − 1)ζ l−1
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= C0C1|λ0|

∞
l=1

(d(i, j)/l)−αζ l−1 l(l − 1)
2

6 C0C1|λ0|d(i, j)−α
∞
l=1

l2+αζ l−1/2 = C2d(i, j)−α

for some constant C2 > 0. Recall |{j : m 6 d(i, j) < m + 1}| 6
C3md−1 for some constant C3 > 0. Thus, when s is large enough

sup
i,n


j:d(i,j)>s

mij,n 6 sup
i,n

∞
m=[s]


j:m6d(i,j)<m+1

C2d(i, j)−α

6

∞
m=[s]

C3md−1C2m−α

6

∞
m=[s]

C3C2(m + 1)d−1
[(m + 1)/2]−α 6 C3C22α


∞

s
x−α+d−1dx

= C3C22α(α − d)−1sd−α,

which implies that ∥yi,n − E[yi,n|Fi,n(s)]∥2 6 σ0C3C22α(α −

d)−1/sα−d.
Next, we discuss the NED of {wi·,nYn}

n
i=1 by the two settings

of the weight matrix respectively under Assumption 3(1) and
Assumption 3(2).

(i) Under Assumption 3(1), for
n

j=1wijyj,n, we are concerned
only those j’s with their locations within d̄0 from i because only
such j’s can satisfywij,n ≠ 0. Hence

∥wi·,nYn − E[wi·,nYn|Fi,n(md̄0)]∥2

6

n
j=1

|wij,n| · ∥yj,n − E[yj,n|Fi,n(md̄0)]∥2

6

n
j=1

|wij,n| · ∥yj,n − E[yj,n|Fj,n((m − 1)d̄0)]∥2

6

n
j=1

|wij,n| · sup
j,n

∥ϵj,n + xj,nβ0∥2(1 − ζ )−1ζm−1

6 sup
j,n

∥ϵj,n + xj,nβ0∥2(1 − ζ )−1λ−1
m ζ

m.

(ii) By LemmaA.1 in Jenish and Prucha (2009), |{j : m 6 d(i, j) <
m + 1}| 6 C1md−1 for some constant C1 > 0. When s is large
enough,

∥wi·,nYn − E[wi·,nYn|Fi,n(s)]∥2

6


k:d(k,i)6s/2

|wik,n| · ∥yk,n − E[yk,n|Fi,n(s)]∥2

+


k:d(k,i)>s/2

|wik,n| · ∥yk,n − E[yk,n|Fi,n(s)]∥2

6


k:d(k,i)6s/2

|wik,n| · ∥yk,n − E[yk,n|Fk,n(s/2)]∥2

+

∞
m=[s/2]


k:m6d(k,i)<m+1

|wik,n| · ∥yk,n∥2

6


k:d(k,i)6s/2

|wik,n|C(s/2)d−α + (sup
n,k

∥yk,n∥2)

∞
m=[s/2]

C1md−1C0m−α

6 ∥Wn∥∞C(s/2)d−α + (sup
n,k

∥yk,n∥2)C1C02α−d+1


∞

[s/2]

dx
xα−d+1

6 C2sd−α

for some constant C2 > 0,where the second inequality comes from
Fk,n(s/2) ⊆ Fi,n(s)when d(k, i) 6 s/2.
Finally, the NED properties of {zi,n(θ)}ni=1 and {y∗

i,n}
n
i=1 are

obvious from {wi·,nYn}
n
i=1. �

Proof of Proposition 2. For any ϵ > 0, let B = {|y∗

i,n| <
ϵ, |E[y∗

i,n|Fi,n(s)]| < ϵ}. Since |I(x1 > 0) − I(x2 > 0)| 6
|x1−x2|
ϵ

I(|x1| > ϵ or |x2| > ϵ) + I(|x1| < ϵ, |x2| < ϵ) (see the
proof of Proposition 1 of Lei, 2013) ,

∥I(y∗

i,n > 0)− E[I(y∗

i,n > 0)|Fi,n(s)]∥2

6 ∥I(y∗

i,n > 0)− I{E[y∗

i,n|Fi,n(s)] > 0}∥2

6


Bc

[y∗

in − E(y∗

in|Fi,n(s))]2dP/ϵ2 + P(B)
1/2

6
1
ϵ
∥y∗

i,n − E[y∗

i,n|Fi,n(s)]∥2 + P(|y∗

i,n| < ϵ)1/2

6
1
ϵ
∥y∗

i,n − E[y∗

i,n|Fi,n(s)]∥2 + (C2ϵ)
1/2,

for some constants C1 > 0 and C2 > 0, where the first in-
equality originates by Theorem 10.12 in Davidson (1994), the third
inequality is based on the inequality

√
a + b 6

√
a +

√
b for arbi-

trary nonnegative numbers a and b, and the last inequality comes
from the uniform boundedness of the density function of y∗

i,n. Let
ϵ = ∥y∗

i,n − E[y∗

i,n|Fi,n(s)]∥
2/3
2 , then we obtain the conclusion. �

Proof of Lemma 2. Let A = {i : yi,n > 0} be the set of indexes
under which yi,n > 0 and I(A) be the event A’s indicator. As Yn
is a random vector, each of its realizations gives a pattern of zero
and positive observations. Each such pattern gives an A. Thus A
represents a regime, and thus I(A) can be interpreted as a regime
indicator. For each A, we may separate Yn into two subvectors Y1,n,
whose elements are all zeros, and Y2,n, whose elements are all

positive. Similarly, Y ∗
′

n = (Y ∗
′

1,n, Y
∗
′

2,n) and Wn =


W11,An W12,An
W21,An W22,An


,

so that Y ∗

1,n = λ0W12,AnY2,n + X1β0 + ϵ1,n and Y ∗

2,n = Y2,n =

λ0W22,AnY2,n + X2β0 + ϵ2,n. Next, we will calculate the marginal
density function f (y∗

i,n). As the range of y∗

i,n is (−∞,+∞), we
discuss it in two cases: y∗

i,n is positive or negative. In the following,
‘‘ − i′′ means the rest (n − 1) of the elements without i.

When y∗

i,n > 0, there are 2n−1 possible different A’s with i ∈

A ⊂ {1, 2, . . . , n}. Given each A, Y ∗

2,n = λ0W22,AnY ∗

2,n +X2β0 + ϵ2,n.
Hence Y ∗

2,n = (In2 − λ0W22,An)
−1(X2β0 + ϵ2,n). That is to say,

on such a regime A, y∗

i,n ∼ N((In2 − λ0W22,An)
−1
i· X2β0, σ0((In2 −

λ0W22,An)
−1(In2 − λ0W ′

22,An)
−1)ii). By denoting the corresponding

density function as fA(y∗

i,n), we have

f (y∗

i,n) =I(y∗

i,n > 0)


i∈A⊂{1,2,...,n}


fA(Y ∗

−i,n, y
∗

i,n)dY
∗

−i,n

=I(y∗

i,n > 0)


i∈A⊂{1,2,...,n}

fA(y∗

i,n)


fA(Y ∗

−i,n|y
∗

i,n)dY
∗

−i,n.

Because the integral of a conditional density function is 1,
i∈A⊂{1,2,...,n}


fA(Y ∗

−i,n|y
∗

i,n)dY
∗

−i,n = 1. Therefore, so long as
we can show that fA(y∗

i,n) is uniformly bounded, then f (y∗

i,n)
is uniformly bounded on y∗

i,n > 0. It suffices to show that
infA,i,n((In2 − λ0W22,An)

−1(In2 − λ0W ′

22,An)
−1)ii > 0. From Exercise

12.39 in Abadir and Magnus (2005), for any symmetric matrix
M and compatible vector x, x′Mx > min eig(M)x′x, where
min eig(M) is the minimum characteristic root of M . Let x =

(0, . . . , 0, 1, 0, . . . , 0) in the above inequality, where 1 locates in
the jth position. We obtainMjj > min eig(M), ∀j. Hence,

inf
A,i,n
((In2 − λ0W22,An)

−1(In2 − λ0W ′

22,An)
−1)ii

> inf
A,i,n

min eig((In2 − λ0W22,An)
−1(In2 − λ0W ′

22,An)
−1)
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= inf
A,i,n

min eig([(In2 − λ0W ′

22,An)(In2 − λ0W22,An)]
−1)

= inf
A,i,n

[max eig((In2 − λ0W ′

22,An)(In2 − λ0W22,An))]
−1

> inf
A,i,n

[∥(In2 − λ0W ′

22,An)(In2 − λ0W22,An)∥∞]
−1

> inf
A,i,n

[∥In2 − λ0W ′

22,An∥∞ · ∥In2 − λ0W22,An∥∞]
−1

> inf
A,i,n

[∥In2 − λ0W22,An∥1(1 + ζ )]−1

> [(1 + λ0 sup
n

∥Wn∥1) · (1 + ζ )]−1 > 0,

where the second inequality comes from that the spectral radius
of a matrix is less than or equal to its arbitrary norm, and the last
inequality holds because supn ∥Wn∥1 < ∞ under Assumption 3.

When y∗

i,n < 0, there are 2n−1 possible different A’s where
A ⊂ {1, 2, . . . , n} \ {i}. When A = ∅, yj,n = 0 for all j’s, Y ∗

n =

Xnβ0 + ϵn. Thus, given A = ∅, the relevant density for y∗

i,n takes the
same form as the density of N(xi,nβ0, σ

2
0 ). When A ≠ ∅, because

Y ∗

2,n = (In2 − λW22,An)
−1(X2β0 + ϵ2,n),

Y ∗

1,n = λ0W12,AnY2,n + X1β0 + ϵ1,n

= λ0W12,An(In2 − λ0W22,An)
−1(X2β0 + ϵ2,n)+ X1β0 + ϵ1,n

= λ0W12,An(In2 − λ0W22,An)
−1X2β0 + X1β0

+ [λ0W12,An(In2 − λ0W22,An)
−1ϵ2,n + ϵ1,n].

Thus, given A, the relevant density for y∗

it takes the form as
the density of N(λ0wi·,12,An(In2 − λ0W22,An)

−1X2β0 + xiβ0, σ
2
0 +

λ20σ
2
0wi·,12,An(In2 − λ0W22,An)

−1
[wi·,12,An(In2 − λ0W22,An)

−1
]
′).

Because σ 2
0 + λ20σ

2
0wi·,12,An(In2 − λ0W22,An)

−1
[wi·,12,An(In2 −

λ0W22,An)
−1

]
′ > σ 2

0 , f (y∗

i,n) is also uniformly bounded when
y∗

i,n < 0. �

Proof of Proposition 4. Let µ be a measure defined on [0,∞),
µ([0, a]) = 1 + a, and µn

= µ ⊗ · · · ⊗ µ be the product
measure of n µ′s. Because ln x 6 2

√
x − 2, E ln[Ln(θ)/Ln(θ0)] 6

2E(
√
Ln(θ)/Ln(θ0)−1) = 2


(
√
Ln(θ)/Ln(θ0)−1)Ln(θ0)dµn(Yn) =

2(
 √

Ln(θ)Ln(θ0)dµn(Yn)−1) = −

[
√
Ln(θ)−

√
Ln(θ0)]2dµn(Yn)

6 0. Thus, E ln Ln(θ) 6 E ln Ln(θ0), and the equality holds if and only
if Ln(θ) = Ln(θ0) µn-almost everywhere. If θ0 is not identified, then
there exists θ1 ≡ (λ1, β1, σ1) ≠ θ0 such that ln Ln(θ1) = ln Ln(θ0)
µn-almost everywhere, i.e.
n

i=1

[1 − I(yi,n > 0)] ln

1 − Φ


λ0

σ0
wi·,nYn + xi,n

β0

σ0


−

1
2
ln(2πσ 2

0 )

n
i=1

I(yi,n > 0)

+ ln |I2,n − λ0W22,n| −
1
2

n
i=1

I(yi,n > 0)

×


1
σ0

yi,n −
λ0

σ0
wi·,nYn − xi,n

β0

σ0

2

=

n
i=1

[1 − I(yi,n > 0)] ln

1 − Φ


λ1

σ1
wi·,nYn + xi,n

β1

σ1


−

1
2
ln(2πσ 2

1 )

n
i=1

I(yi,n > 0)

+ ln |I2,n − λ1W22,n| −
1
2

n
i=1

I(yi,n > 0)

×


1
σ1

yi,n −
λ1

σ1
wi·,nYn − xi,n

β1

σ1

2
µn-almost everywhere. Because P(y1,n > 0, . . . , yn,n > 0) > 0,

n
2
ln(2πσ 2

0 )− ln |In − λ0Wn|

+
1
2

n
i=1


1
σ0

yi,n −
λ0

σ0
wi·,nYn − xi,n

β0

σ0

2

=
n
2
ln(2πσ 2

1 )− ln |In − λ1Wn|

+
1
2

n
i=1


1
σ1

yi,n −
λ1

σ1
wi·,nYn − xi,n

β1

σ1

2

(14)

for Yn ∈ Rn
++

almost everywhere. Differentiate the above equation
with respect to yj,n, we have

−
λ0

σ 2
0

n
i=1

(yi,n − λ0wi·,nYn − xi,nβ0)wij,n

+
yj,n − λ0wj·,nYn − xj,nβ0

σ 2
0

= −
λ1

σ 2
1

n
i=1

(yi,n − λ1wi·,nYn − xi,nβ1)wij,n

+
yj,n − λ1wj·,nYn − xj,nβ1

σ 2
1

. (15)

Differentiate the above equation with respect to yj,n once more,
λ20
σ 2
0

n
i=1w

2
ij,n +

1−2λ0wjj,n

σ 2
0

=
λ21
σ 2
1

n
i=1w

2
ij,n +

1−2λ1wjj,n

σ 2
1

. Because

wjj,n = 0 and there exists j ≠ j′ such that
n

i=1w
2
ij,n ≠

n
i=1w

2
ij′,n,

we obtain λ20/σ
2
0 = λ21/σ

2
1 and 1/σ 2

0 = 1/σ 2
1 . Hence, σ0 = σ1

and |λ0| = |λ1|. Differentiate Eq. (15) with respect to yk,n (k ≠ j),
λ20
σ 2
0

n
i=1wik,nwij,n −

λ0
σ 2
0
(wkj,n + wjk,n) =

λ21
σ 2
1

n
i=1wik,nwij,n −

λ1
σ 2
1
(wkj,n+wjk,n). Thus,λ0(wkj,n+wjk,n) = λ1(wkj,n+wjk,n). Because

Wn + W ′
n ≠ 0 and wii,n ≡ 0, we have λ0 = λ1. Eq. (15) implies

that
n

i=1 λ0wij,nxi,nβ0 − xjβ0 =
n

i=1 λ0wij,nxi,nβ1 − xjβ1. Thus,
(In − λ0W ′

n)Xnβ0 = (In − λ0W ′
n)Xnβ1. As (In − λ0W ′

n) is invertible,
Xnβ0 = Xnβ1. So, β0 = β1. �

Proof of Theorem 1. With Assumption 8, it is sufficient to show
supθ∈Θ

1
n |Ln(θ) − ELn(θ)|

p
−→ 0 and the equicontinuity of

{ELn(θ)/n}∞n=1.

The proof of supθ∈Θ 1
n |Ln(θ)− ELn(θ)|

p
−→ 0:

By Theorem 1 of Jenish and Prucha (2012), if a uniformly L1-
NED random field is uniformly Lp bounded for some p > 1 on
some suitable α-mixing base, then the weak law of large numbers
(WLLN) holds. We have shown the uniform L2-NED and uniform Lp
boundedness of related terms of the Tobit model in the previous
lemmas and propositions. By Eq. (3),

1
n
[ln Ln(θ)− E ln Ln(θ)] =

1
n

n
i=1

{I(yi,n = 0) lnΦ(zi,n(θ))

− E[I(yi,n = 0) lnΦ(zi,n(θ))]}

−
1
2n

ln(2πσ 2)

n
i=1

[I(yi,n > 0)− EI(yi,n > 0)]

+
1
n
(ln |I2,n − λW22,n| − E ln |I2,n − λW22,n|)

−
1
2n

n
i=1

{I(yi,n > 0)z2i,n(θ)− E[I(yi,n > 0)z2i,n(θ)]}. (16)



X. Xu, L.-f. Lee / Journal of Econometrics 188 (2015) 264–280 277
Because of the compactness of σ 2, the convergence to zero in
probability of the second term on the right hand side of Eq. (16)
will be uniform.

As {yi,n}, {wi·,nYn}, {y2i,n}, {(wi·,nYn)
2
} and {I(yi,n > 0)}

are all uniformly L2-NED random fields, by Theorem 17.9 in
Davidson (1994), {I(yi,n > 0)y2i,n}

n
i=1, {(wi·,nYn)

2I(yi,n > 0)}ni=1,
{wi·,nYnI(yi,n > 0)}ni=1 and {(wi·,nYn)(xi,nβ)}ni=1 are all uniformly
L1-NED random fields. And by Lemma A.9, they are all uniformly
L2+∆/2 bounded, thus the pointwise WLLN is applicable to

I(yi,n > 0)


1
σ
yi,n −

λ

σ
wi·,nYn − xi,n

β

σ

2

=
1
σ 2

I(yi,n > 0)y2i,n +
λ2

σ 2
(wi·,nYn)

2I(yi,n > 0)

+
1
σ 2
(xi,nβ)2I(yi,n > 0)−

2λ
σ 2
wi·,nYnI(yi,n > 0)

−
2β
σ 2

xi,nyi,nI(yi,n > 0)+
2λ
σ 2
(wi·,nYn)(xi,nβ)I(yi,n > 0).

Further, because of compactness of the parameter space, 1/σ 2,
λ2/σ 2, β2/σ 2, λ/σ 2, β/σ 2 and βλ/σ 2 are all bounded, uniform
convergence in probability follows.

Now we will show the uniform convergence of L1n(θ) ≡
1
n

n
i=1{I(yi,n = 0) ln[1 − Φ( λ

σ
wi·,nYn + xi,n

β

σ
)] − E{I(yi,n =

0) ln[1 − Φ( λ
σ
wi·,nYn + xi,n

β

σ
)]}} in Eq. (16). For any θ ∈ Θ , by

Proposition 2, Lemmas 2 and A.9, L1n(θ)
p
−→ 0. By the compactness

of the parameter space and Theorem 1 in Andrews (1992), it is
sufficient to show that L1n(θ) is SE. To do so, we only need to check
the conditions of Corollary 3.1 in Andrews (1992). Let λ̃ =

λ
σ
, β̃ =

β

σ
, σ̃ = σ−1, similar to the reparameterization due to Olsen (1978).

Because the parameter space is compact, | ∂θ̃j
∂θk

| is bounded for all j’s

and k’s by simple calculation. Then L1n(λ̃, β̃) =
1
n

n
i=1{I(yi,n =

0) ln[1−Φ(λ̃wi·,nYn + xi,nβ̃)] − E{I(yi,n = 0) ln[1−Φ(λ̃wi·,nYn +

xi,nβ̃)]}}. By Lemma A.5, it suffices to show that L1n(λ̃, β̃) is SE.
Evidently, the ranges of λ̃ and β̃ are compact. Denote λ̃m = sup λ̃
and β̃m = supβ̃ maxKj=1 |β̃j|. Recall from the proof of Lemma A.9,
| lnΦ(x1) − lnΦ(x2)| 6 (2|x1| + 2|x2| + C1)|x1 − x2| for some
constant C1. Hence,1n

n
i=1

I(yi,n = 0){lnΦ(−λ̃wi·,nYn − xi,nβ̃)

− lnΦ(−λ̃′wi·,nYn − xi,nβ̃ ′)}


6

1
n

n
i=1

[2|λ̃wi·,nYn + xi,nβ̃| + 2|λ̃′wi·,nYn + xi,nβ̃ ′
| + C1]

× |(λ̃− λ̃′)wi·,nYn + xi,n(β̃ − β̃ ′)|

6
1
n

n
i=1


4λ̃m|wi·,nYn| + 4β̃m

K
j=1

|xij,n| + C1



×


|wi·,nYn| +

K
j=1

|xij,n|


· (|λ̃− λ̃′

| + |β̃ − β̃ ′
|).

By Proposition 1, supi,n ∥wi·,nYn∥|4+∆ < ∞. Thus, supi,n ∥{4λ̃m
|wi·,nYn| + 4β̃m

K
j=1 |xij,n| + C1}(|wi·,nYn| +

K
j=1 |xij,n|)∥2+∆/2 <

∞ by Cauchy’s inequality. Therefore, by Lemma 1 (a) in Andrews
(1992), L1n(θ) is SE and {

1
n

n
i=1 E[I(yi,n = 0) lnΦ(−λ̃wi·,nYn −

xi,nβ̃)]} is equicontinuous.
Now, it remains to show the uniform convergence of 1
n (ln |I2,n−

λW22,n| − E ln |I2,n − λW22,n|). We will use a strategy found in Qu
and Lee (2013). Let Gn(Yn) = diag(I(y1,n > 0), . . . , I(yn,n > 0)).
Then, as shown in Qu and Lee (2013),

ln |I2,n − λW22,n| = −

∞
l=1

λl

l
tr{[Gn(Yn)WnGn(Yn)]

l
}

= −

n
i=1

I(yi,n > 0)


∞
l=1

λl

l
[Gn(Yn)WnGn(Yn)]

l


ii

= −

n
i=1

I(yi,n > 0)
∞
l=1

λl

l


j1

· · ·


jl−1

wij1,nwj1j2,n · · ·

×wjl−2jl−1,nwjl−1 i,nI(yj1,n > 0) · · · I(yjl−1,n > 0).

For any ϵ > 0, let Kϵ be a natural number that does not depend
on n and its value will be determined later. Divide the summation
over l into two parts: Si,n(λ) ≡

Kϵ
l=1

λl

l gil,n, where gil,n =

I(yi,n > 0)


j1
· · ·


jl−1
wij1,nwj1j2,n · · ·wjl−2jl−1,nwjl−1 i,nI(yj1,n >

0) · · · I(yjl−1,n > 0), and Ri,n(λ) ≡ I(yi,n > 0)


∞

l=Kϵ+1
λl

l gil,n.

We will show that supλ∈Λ |
1
n

n
i=1[Si,n(λ) − ESi,n(λ)]|

p
−→ 0 and

supλ,n |
1
n

n
i=1[Ri,n(λ) − ERi,n(λ)]| < ϵ/2. From Lemma A.8, for

each natural number l 6 Kϵ , {gil,n} is a uniform NED random field.
Furthermore, from the definition of gil,n, we have supi,n |gil,n| < ∞.

Hence, 1
n

n
i=1(gil,n − Egil,n)

p
−→ 0 follows from theWLLN in Jenish

and Prucha (2012). Thus, supλ∈Λ |
1
n

n
i=1[Si,n(λ)− ESi,n(λ)]|

p
−→ 0.

Notice that there is a constant Kϵ such that supλ∈Λ |
1
n

n
i=1 Ri,n

(λ)| 6


∞

l=Kϵ+1
λlm
l ∥Wn∥

l
∞

<
ζKϵ+2

Kϵ (1−ζ )
< ϵ

4 . Similarly,
supλ∈Λ |

1
n

n
i=1 ERi,n(λ)| <

ϵ
4 . Hence, supλ∈Λ |

1
n

n
i=1[Ri,n(λ) −

ERi,n(λ)]| <
ϵ
2 . Consequently, as n → ∞,

P

sup
λ∈Λ

1
n

 ln |I2,n − λW22,n| − E ln |I2,n − λW22,n|

 > ϵ


6 P


sup
λ∈Λ

1n
n

i=1

[Si,n(λ)− ESi,n(λ)]


+ sup

λ∈Λ

1n
n

i=1

[Ri,n(λ)− ERi,n(λ)]

 > ϵ



6 P


sup
λ∈Λ

1n
n

i=1

[Si,n(λ)− ESi,n(λ)]

 > ϵ/2


→ 0.

The proof of the equicontinuity of {ELn(θ)/n}∞n=1:

Previously, we have shown {
1
n

n
i=1 E[I(yi,n = 0) lnΦ(−λ̃wi·,n

Yn − xi,nβ̃)]} is equicontinuous. Because Θ is compact, the
equicontinuity of 1

2n ln(2πσ 2)E
n

i=1 I(yi,n > 0) is obvious. We
still need to show the other two terms, 1

nE ln |I2,n − λW22,n| and
1
2nE

n
i=1 I(yi,n > 0)( 1

σ
yi,n −

λ
σ
wi·,nYn − xi,n

β

σ
)2, in ELn(θ)/n are

equicontinuous. By Lemma A.5, we only need to show that

1
2n

E
n

i=1

I(yi,n > 0)(σ̃yi,n − λ̃wi·,nYn − xi,nβ̃)2

=
1
2n

E
n

i=1

I(yi,n > 0)[σ̃ 2y2i,n + λ̃2(wi·,nYn)
2
+ β̃ ′x′

i,nxi,nβ̃

− 2σ̃ λ̃yi,nwi·,nYn − 2σ̃yi,nxi,nβ̃ + 2λ̃wi·,nYnxi,nβ̃]
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is equicontinuouswith respect to θ̃ . Because {y2i,n}
n
i=1, {(wi·,nYn)

2
}
n
i=1

and {yi,nwi·,nYn}
n
i=1 are uniformly L2+∆/2 bounded, {xi,n}ni=1 is uni-

formly L4+∆ bounded, and the parameter space is compact, we
have the equicontinuity of 1

2nE
n

i=1 I(yi,n > 0)(σ̃yi,n − λ̃wi·,nYn −

xi,nβ̃)2.
Recall E ln |I2,n−λW22,n| = E ln |In−λWn|. E ln |I2,n−λW22,n|/n

is equicontinuous because

sup
λ,n

 d
dλ

1
n
E ln |I2,n − λW22,n|

 = sup
λ,n

1n tr (In − λWn)
−1Wn


6 sup

n
E

∞
l=0

λlm∥Wn∥
l+1
∞
< ∞. �

Proof of Proposition 5. By Corollary 1 in Jenish and Prucha
(2012),withAssumptions 10 and11, to show the CLT, it is sufficient
to check the uniform L2+δ̃ integrability, where δ̃ is defined in
Assumption 10, the uniform NED property of {∥qi,n(θ0)∥}ni=1 in
Eq. (8), where ∥·∥ is the Euclidean vector norm, and the decreasing
rate of the NED coefficient.

We discuss the NED property separately by the two different
settings in Assumption 3. Under Assumption 3(1), {zi,n(θ)2}ni=1,
{lnΦ(zi,n(θ))}ni=1, {

φ(zi,n(θ))
Φ(zi,n(θ))

}, {
φ(zi,n(θ))wi·,nYn

Φ(zi,n(θ))
} and {ri,n(λ0)}ni=1 are

uniformly and geometrically L2-NED random fields and uniformly
L4+δ/2 bounded. Thus, by Lemma A.2, their products are also
uniformly and geometrically L2-NED random fields. That is to
say, all terms in qi,n(θ0) are uniformly and geometrically L2-NED
random fields. By LemmaB.4 in Xu and Lee (2015) for the Euclidean
norm, {∥qi,n(θ0)∥}ni=1 is a uniformly and geometrically L2-NED
random field. Then conditions (c) and (d) in Assumption 4 in Jenish
and Prucha (2012) are satisfied.

Under Assumption 3(2), from Proposition 3(2), {ri,n(λ0)}ni=1
is a uniformly L2-NED random field with coefficient 1/s(α−d)/3.
With Assumptions 5 and 10(i), by Lemma A.9, {zi,n(θ)2}ni=1,
{lnΦ(zi,n(θ))}ni=1, {

φ(zi,n(θ))
Φ(zi,n(θ))

} and {
φ(zi,n(θ))wi·,nYn

Φ(zi,n(θ))
} are all uni-

formly L4+δ/2 bounded, and uniformly L2-NED random fields
with NED coefficients s−(α−d)(4+δ)/(12+2δ), s−(α−d)(4+δ)/(12+2δ),
s−(α−d)(2+δ)/(10+2δ) and s−(α−d)δ/(8+2δ). Because 4+δ

12+2δ >
2+δ

10+2δ >
δ

8+2δ , the above four random fields are all with NED coefficient
s−(α−d)δ/(8+2δ). From Proposition 2, {I(yi,n = 0)}ni=1 is uniformly
NED with coefficient 1/s(α−d)/3. Then by Lemma A.2, {I(yi,n =

0)φ(zi,n)wi·,nYn/Φ(zi,n)}ni=1 is a uniformly NED random field with
NED coefficient {max[s−(α−d)/3, s−(α−d)δ/(8+2δ)

]}
δ/(8+2δ). Similarly,

{I(yi,n = 0)zi,nwi·,nYn}
n
i=1, {I(yi,n > 0)zi,nxik}ni=1, {I(yi,n =

0)φ(zi,n)xik,n/Φ(zi,n)}ni=1, {I(yi,n > 0)xik,nzi,n}ni=1, {I(yi,n >

0)z2i,n}
n
i=1 are all uniformly L2-NED random fields with NED coeffi-

cient {max[s−(α−d)/3, s−(α−d)δ/(8+2δ)
]}
δ/(8+2δ). That is to say, all the

terms in the score are uniformly NED random fieldswith NED coef-
ficient {max[s−(α−d)/3, s−(α−d)δ/(8+2δ)

]}
δ/(8+2δ). Hence, by Lemma

B.4 in Xu and Lee (2015), {∥qi,n(θ0)∥}ni=1 is a uniformly L2-NED ran-
dom field with coefficient {max[s−(α−d)/3, s−(α−d)δ/(8+2δ)

]}
δ/(8+2δ).

Condition (c) in Assumption 4 in Jenish and Prucha (2012) requires
∞

s=1 s
d−1

{max[s−(α−d)/3, s−(α−d)δ/(8+2δ)
]}
δ/(8+2δ) < ∞, i.e., α >

(7 + 24δ−1)d and α > (5 + 32δ−1
+ 64δ−2)d.

Next, it remains to check the uniform L2+δ̃ integrability of
{∥qi,n(θ0)∥}ni=1. It is sufficient to show that supi,n E∥qi,n(θ)∥4+δ/2 <

∞ since δ̃ < 2 + δ/2 from Assumption 10 (see Exercise 5.4, p.
54, Shorack, 2000). From the Cr -inequality,15

15 If r > 1, then E|X1 + · · · + Xk|
r 6 kr−1(E|X1|

r
+ · · · + E|Xk|

r )
E∥qi,n(θ)∥4+ δ
2 6 (2 + K)1+

δ
4 E

∂ ln Ln(θ)
∂λ

4+ δ
2

+

K
k=1

∂ ln Ln(θ)
∂βk

4+ δ
2

+

∂ ln Ln(θ)
∂σ

4+ δ
2

. (17)

Notice |ri,n(λ)| 6


∞

l=1 |λ|l


j1
· · ·


jl
|wij1,nwj1j2,n · · ·wjl i,n| 6

∞

l=1 |λ|l∥Wn∥
l+1
∞

6 λ−1
m

ζ 2

1−ζ . With Lemma A.9, every term on the
right hand side of Eq. (17) is uniformly L4+δ/2 integrable. Hence, all
the conditions for the CLT of Jenish and Prucha (2012) are satis-
fied, and the asymptotic normality of the normalized score vector
follows. �

Proof of Theorem 2. Because 0 =
∂ ln Ln(θ̂)
∂θ

=
∂ ln Ln(θ0)

∂θ
+

∂2 ln Ln(θ̄)
∂θ∂θ ′ ·

(θ̂ − θ0),
√
n(θ̂ − θ0) = [

1
n
∂2 ln Ln(θ̄)
∂θ∂θ ′ ]

−1 1
√
n
∂ ln Ln(θ0)

∂θ
.

Claim: For any consistent estimate θ̄ of θ0, 1
n [
∂2 ln Ln(θ̄)
∂θ∂θ ′ −

E ∂
2 ln Ln(θ0)
∂θ∂θ ′ ] = op(1).

As E ∂
2 ln Ln(θ0)
∂θ∂θ ′ = −Var

n
i=1 qi,n(θ0), with the above claim, and

the asymptotic normality of the normalized score vector, we have
√
n(θ̂ − θ0)

d
−→ N(0,Σ−1

0 ). In the following, we will prove the

above claim. Let ψ(x) ≡
d[φ(x)/Φ(x)]

dx =
−xφ(x)
Φ(x) −

φ2(x)
Φ2(x)

. Then the
second derivatives are

∂2 ln Ln(θ)
∂λ2

=

n
i=1

I(yi,n = 0)ψ(zi,n(θ))

wi·,nYn

σ

2

− tr[(I2,n − λW22,n)
−1W22,n]

2

−

n
i=1

I(yi,n > 0)

wi·,nYn

σ

2

,

∂2 ln Ln(θ)
∂λ∂β

=

n
i=1

I(yi,n = 0)ψ(zi,n(θ))
wi·,nYn

σ

x′

i,n

σ

−

n
i=1

I(yi,n > 0)
wi·,nYn

σ

x′

i,n

σ
,

∂2 ln Ln(θ)
∂λ∂σ

=

n
i=1

I(yi,n = 0)

φ(zi,n(θ))wi·,nYn

Φ(zi,n(θ))σ 2

− ψ(zi,n)
λwi·,nYn + xi,nβ

σ 2

wi·,nYn

σ


− 2

n
i=1

I(yi,n > 0)
yi,n − λwi·,nYn − xi.nβ

σ 3
wi·,nYn,

∂2 ln Ln(θ)
∂β∂β ′

=

n
i=1

I(yi,n = 0)ψ(zi,n(θ))
x′

i,nxi,n
σ 2

−

n
i=1

I(yi,n > 0)
x′

i,nxi,n
σ 2

,

∂2 ln Ln(θ)
∂β∂σ

=

n
i=1

I(yi,n = 0)

φ(zi,n)
Φ(zi,n)

− ψ(zi,n)
λwi·,nYn + xi,nβ

σ


x′

i,n

σ 2

− 2
n

i=1

I(yi,n > 0)σ−3(yi,n − λwi·,nYn − xi.nβ)x′

i,n,
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∂2 ln Ln(θ)
∂σ∂σ

=

n
i=1

I(yi,n = 0)


ψ(zi,n)


λwi·,nYn + xi.nβ

σ 2

2

− 2
φ(zi,n(θ))(λwi·,nYn + xi.nβ)

Φ(zi,n(θ))σ 3


+ σ−2

n
i=1

I(yi,n > 0)− 3
n

i=1

I(yi,n > 0)

× σ−4(yi,n − λwi·,nYn − xi.nβ)2.

We will first show 1
n [
∂2 ln Ln(θ0)
∂θ∂θ ′ − E ∂

2 ln Ln(θ0)
∂θ∂θ ′ ]

p
−→ 0 and then

1
n [
∂2 ln Ln(θ̂)
∂θ∂θ ′ −

∂2 ln Ln(θ0)
∂θ∂θ ′ ]

p
−→ 0.

The proof of 1
n [
∂2 ln Ln(θ0)
∂θ∂θ ′ − E ∂

2 ln Ln(θ0)
∂θ∂θ ′ ]

p
−→ 0:

First, consider ψ(x) and {ψ(zi,n)}ni=1, where zi,n = zi,n(θ0).

Note that ψ ′(x) =
(x2−1)φ(x)

Φ(x) +
3xφ2(x)
Φ2(x)

+
2φ3(x)
Φ3(x)

. Since
limx→−∞ φ(x)/[xΦ(x)] = −1, we have |ψ(x)| = |−xφ(x)/Φ(x)−
φ2(x)/Φ2(x)| 6 3x2 +C and |ψ ′(x)| 6 7|x|3 +C for some constant
C . Thus, {ψ(zi,n)}ni=1 is also uniformly L4+δ/2 bounded and |ψ(x1)−
ψ(x2)| 6 (7|x1|3+7|x2|3+C)|x1−x2|. Because {zi,n}ni=1 is uniformly
L8+δ bounded, by Lemma A.4, {ψ(zi,n)}ni=1 is also a uniformly L2-
NED random field. Second, consider the product terms in the
second derivatives. From Lemma A.9, { φ(zi,n)

Φ(zi,n)
}
n
i=1 is uniformly L8+δ

bounded, and uniformly L2-NED. By Cauchy’s inequality, the terms
{I(yi,n = 0)ψ(zi,n)(wi·,nYn/σ)

2
}
n
i=1, · · · , {I(yi,n > 0)z2i,nwi·,nYn}

n
i=1

in the second derivatives of the log-likelihood function, are all
uniformly L2+δ/4 bounded, and uniformly L1-NED similarly to
Theorem 17.9 in Davidson (1994). Thus theWLLN applies for these
NED random fields.

With the above results, it remains to show that {tr[(I2,n −

λ0W22,n)
−1W22,n]

2
−Etr[(I2,n−λ0W22,n)

−1W22,n]
2
}/n

p
−→ 0. Notice

that tr[(I2,n − λ0W22,n)
−1W22,n]

2
= tr[(In − λ0Wn)

−1Wn]
2, whereWn = Gn(Yn)WnGn(Yn), and {[(In − λ0Wn)

−1Wn]
2
ii}

n
i=1 is a uniform

NED random field from Proposition 3(2). Then the WLLN follows
from the uniform boundedness of its elements:[(In − λGn(Yn)WnGn(Yn))

−1Gn(Yn)WnGn(Yn)]
2
ii


=

 ∞
k=0

(1 + k)λk

j1

· · ·


jk+1

wij1,nwj1j2,n · · ·wjk+1 i,n

× I(yi,n > 0)I(yj1,n > 0) · · · I(yjk+1,n > 0)


6

∞
k=0

(1 + k)|λ|k

j1

· · ·


jk+1

|wij1,nwj1j2,n · · ·wjk+1i,n|

6

∞
k=0

(1 + k)|λ|k∥Wn∥
k+2
∞

6

∞
k=0

(1 + k)λ−2
m ζ

k+2 < ∞.

The proof of 1
n [
∂2 ln Ln(θ̄)
∂θ∂θ ′ −

∂2 ln Ln(θ0)
∂θ∂θ ′ ]

p
−→ 0 :

It is sufficient to show that {
1
n
∂2 ln Ln(θ)
∂θ∂θ ′ }

n
i=1 is SE. This is because

{vT (·) : T > 1} is SE at τ0, if and only if, for any sequence
{τ̂T : T > 1} that satisfies ρ(τ̂T , τ0)

p
−→ 0, where ρ(·, ·) is a metric,

vT (τ̂T )− vT (τ0)
p
−→ 0 (Andrews, 1994).

Most terms but one in the second derivatives are SE by
Lemma A.6. For example, consider the first term 1

n

n
i=1 I(yi,n =

0)ψ(zi,n)(wi·,nYn/σ)
2 in 1

n∂
2 ln Ln(θ)/∂λ2. Its SE is equivalent to

that of 1
n

n
i=1 ψ(zi,n)·I(yi,n = 0)(wi·,nYn)

2, because the parameter
space of σ is compact and does not contain 0. We have shown that
|ψ(x1) − ψ(x2)| 6 (7|x1|3 + 7|x2|3 + C)|x1 − x2|, {zi,n(θ)}ni=1
is uniformly (in i and n) L8+δ bounded, and {(wi·,nYn)

2
}
n
i=1 are

uniformly L4+δ/2 bounded, thus the conditions of Lemma A.6
are satisfied. The only term that Lemma A.6 is not applicable
to is 1
n tr[(I2,n − λW22,n)

−1W22,n]
2. However, with d{ 1

n tr[(I2,n −

λW22,n)
−1W22,n]

2
}/dλ =

2
n tr[(I2,n − λW22,n)

−1W22,n]
3, 1

n tr[(I2,n −

λW22,n)
−1W22,n]

2 is SE because1n tr[(I2,n − λW22,n)
−1W22,n]

3


6 sup
i

|{[(I2,n − λW22,n)
−1W22,n]

3
}ii|

=




∞
l=0

λlW l+1
22,n

∞
l′=0

λl
′

W l′+1
22,n

∞
l′′=0

λl
′′

W l′′+1
22,n


ii


=




∞
k=0


l+l′+l′′=k

λl+l′+l′′W l+l′+l′′+3
22,n


ii


6

∞
k=0

0.5(k + 1)(k + 2)λ−3
m ∥λmW22,n∥

k+3
∞

6

∞
k=0

0.5(k + 1)(k + 2)λ−3
m ζ

k+3 < ∞. �

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2015.05.004.
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